留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Jingzhong Xie, Naxin Huo, Shenghui Zhou, Yi Wang, Guanghao Guo, Karin R. Deal, Shuhong Ouyang, Yong Liang, Zhenzhong Wang, Lichan Xiao, Tingting Zhu, Tiezhu Hu, Vijay Tiwari, Jianwei Zhang, Hongxia Li, Zhongfu Ni, Yingyin Yao, Huiru Peng, Shengli Zhang, Olin D. Anderson, Patrick E. McGuire, Jan Dvorak, Ming-Cheng Luo, Zhiyong Liu, Yong Q. Gu, Qixin Sun. Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes[J]. Journal of Genetics and Genomics, 2017, 44(1): 51-61. doi: 10.1016/j.jgg.2016.09.005
Citation: Jingzhong Xie, Naxin Huo, Shenghui Zhou, Yi Wang, Guanghao Guo, Karin R. Deal, Shuhong Ouyang, Yong Liang, Zhenzhong Wang, Lichan Xiao, Tingting Zhu, Tiezhu Hu, Vijay Tiwari, Jianwei Zhang, Hongxia Li, Zhongfu Ni, Yingyin Yao, Huiru Peng, Shengli Zhang, Olin D. Anderson, Patrick E. McGuire, Jan Dvorak, Ming-Cheng Luo, Zhiyong Liu, Yong Q. Gu, Qixin Sun. Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes[J]. Journal of Genetics and Genomics, 2017, 44(1): 51-61. doi: 10.1016/j.jgg.2016.09.005

doi: 10.1016/j.jgg.2016.09.005

Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Akhunov, E.D., Akhunova, A.R., Anderson, O.D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes BMC Genomics, 11 (2010),p. 702
    [2] Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M. et al. Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 10836-10841
    [3] Akpinar, B.A., Lucas, S.J., Vrana, J. et al. Plant Biotechnol. J., 13 (2015),pp. 740-752
    [4] Arumuganathan, K., Earle, E.D. Nuclear DNA content of some important plant species Plant Mol. Biol. Rep., 9 (1991),pp. 208-218
    [5] Camacho, C., Coulouris, G., Avagyan, V. et al. BLAST+: architecture and applications BMC Bioinformatics, 10 (2009),p. 421
    [6] Chapman, J.A., Mascher, M., Buluc, A. et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome Genome Biol., 16 (2015),p. 26
    [7] Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
    [8] Choulet, F., Wicker, T., Rustenholz, C. et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces Plant Cell, 22 (2010),pp. 1686-1701
    [9] Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication Science, 316 (2007),pp. 1862-1866
    [10] Dvorak, J., Akhunov, E.D. Genetics, 171 (2005),pp. 323-332
    [11] Dvorak, J., Deal, K.R., Luo, M.C. et al. The origin of spelt and free-threshing hexaploid wheat J. Hered., 103 (2012),pp. 426-441
    [12] Dvorak, J., Luo, M.C., Yang, Z.L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species Genetics, 148 (1998),pp. 423-434
    [13] Dvorak, J., Mcguire, P.E., Mendlinger, S. Plant Syst. Evol., 144 (1984),pp. 209-220
    [14] Dvorak, J., Terlizzi, P., Zhang, H.B. et al. The evolution of polyploid wheats: identification of the A genome donor species Genome, 36 (1993),pp. 21-31
    [15] Dvorak, J., Yang, Z.L., You, F.M. et al. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates Genetics, 168 (2004),pp. 1665-1675
    [16] Dvorak, J., Zhang, H.B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 9640-9644
    [17] FAO
    [18] Feldman, M., Levy, A.A. Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes J. Genet. Genomics, 36 (2009),pp. 511-518
    [19] Glover, N.M., Daron, J., Pingault, L. et al. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B Genome Biol., 16 (2015),p. 188
    [20] Gordon, D., Green, P. Consed: a graphical editor for next-generation sequencing Bioinformatics, 29 (2013),pp. 2936-2937
    [21] Hastie, A.R., Dong, L., Smith, A. et al. PLoS One, 8 (2013),p. e55864
    [22] Huo, N., Lazo, G.R., Vogel, J.P. et al. Funct. Integr. Genomics, 8 (2008),pp. 135-147
    [23] International Brachypodium Initiative Nature, 463 (2010),pp. 763-768
    [24] International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [25] International Wheat Genome Sequencing Consortium Science, 345 (2014),p. 1251788
    [26] Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
    [27] Kersey, P.J., Allen, J.E., Christensen, M. et al. Ensembl Genomes 2013: scaling up access to genome-wide data Nucleic Acids Res., 42 (2014),pp. D546-D552
    [28] Kihara, H. Agri. Hort., 19 (1944),pp. 13-14
    [29] Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [30] Kumar, A., Seetan, R., Mergoum, M. et al. BMC Genomics, 16 (2015),p. 800
    [31] Langham, R.J., Walsh, J., Dunn, M. et al. Genomic duplication, fractionation and the origin of regulatory novelty Genetics, 166 (2004),pp. 935-945
    [32] Lennon, N.J., Lintner, R.E., Anderson, S. et al. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454 Genome Biol., 11 (2010),p. R15
    [33] Leroy, P., Guilhot, N., Sakai, H. et al. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes Front. Plant. Sci., 3 (2012),p. 5
    [34] Li, A., Liu, D., Wu, J. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat Plant Cell, 26 (2014),pp. 1878-1900
    [35] Li, H., Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform Bioinformatics, 26 (2010),pp. 589-595
    [36] Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [37] Love, A. Conspectus of the Triticeae Feddes Repert., 95 (1984),pp. 425-521
    [38] Luo, M.C., Deal, K.R., Akhunov, E.D. et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 15780-15785
    [39] Luo, M.C., Gu, Y.Q., You, F.M. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 7940-7945
    [40] Luo, M.C., Ma, Y., You, F.M. et al. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species BMC Genomics, 11 (2010),p. 122
    [41] Margulies, M., Egholm, M., Altman, W.E. et al. Genome sequencing in microfabricated high-density picolitre reactors Nature, 437 (2005),pp. 376-380
    [42] Massa, A.N., Wanjugi, H., Deal, K.R. et al. Mol. Biol. Evol., 28 (2011),pp. 2537-2547
    [43] Mc, F.E., Sears, E.R. J. Hered., 37 (1946),pp. 107-116
    [44] McIntosh, R.A., Yamazaki, Y., Dubcovsky, J. et al.
    [45] Nesbitt, M., Samuels, D.C.
    [46] Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
    [47] Ohno, S.
    [48] Oleszczuk, S., Lukaszewski, A.J. The origin of unusual chromosome constitutions among newly formed allopolyploids Am. J. Bot., 101 (2014),pp. 318-326
    [49] Paterson, A.H., Bowers, J.E., Bruggmann, R. et al. Nature, 457 (2009),pp. 551-556
    [50] Rees, H., Walters, M.R. Nuclear DNA and evolution of wheat Heredity, 20 (1965),pp. 73-82
    [51] Safar, J., Simkova, H., Kubalakova, M. et al. Development of chromosome-specific BAC resources for genomics of bread wheat Cytogenet. Genome Res., 129 (2010),pp. 211-223
    [52] Smit, A., Hubley, R., Green, P.
    [53] Stankova, H., Hastie, A.R., Chan, S. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes Plant Biotechnol. J., 14 (2016),pp. 1523-1531
    [54] Tang, H., Zhang, X., Miao, C. et al. ALLMAPS: robust scaffold ordering based on multiple maps Genome Biol., 16 (2015),p. 3
    [55] Wang, J., Luo, M.C., Chen, Z. et al. New Phytol., 198 (2013),pp. 925-937
    [56] Wang, S., Wong, D., Forrest, K. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array Plant Biotechnol. J., 12 (2014),pp. 787-796
    [57] Wang, Y., Tang, H., Debarry, J.D. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity Nucleic Acids Res., 40 (2012),p. e49
    [58] Warburton, M.L., Crossa, J., Franco, J. et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm Euphytica, 149 (2006),pp. 289-301
    [59] Wu, T.D., Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads Bioinformatics, 26 (2010),pp. 873-881
    [60] Zhang, C., Wang, J., Long, M. et al. gKaKs: the pipeline for genome-level Ka/Ks calculation Bioinformatics, 29 (2013),pp. 645-646
    [61] Zhang, H., Bian, Y., Gou, X. et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19466-19471
    [62] Zhang, H., Dawe, R.K. Total centromere size and genome size are strongly correlated in ten grass species Chromosome Res., 20 (2012),pp. 403-412
    [63] Zhang, J., Kudrna, D., Mu, T. et al. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences Bioinformatics, 32 (2016),pp. 3058-3064
    [64] Zhang, T., Hu, Y., Jiang, W. et al. Nat. Biotechnol., 33 (2015),pp. 531-537
    [65] Zhao, N., Zhu, B., Li, M. et al. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat Genetics, 188 (2011),pp. 499-510
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  37
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-19
  • 录用日期:  2016-09-27
  • 修回日期:  2016-09-26
  • 网络出版日期:  2016-10-05
  • 刊出日期:  2017-01-20

目录

    /

    返回文章
    返回