留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils

Zhi Chang Chen Hong Liao

Zhi Chang Chen, Hong Liao. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003
Citation: Zhi Chang Chen, Hong Liao. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003

doi: 10.1016/j.jgg.2016.11.003

Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Barber, S.A.
    [2] Cabral, L., Soares, C.R., Giachini, A.J. et al. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications World J. Microbiol. Biotechnol., 31 (2015),pp. 1655-1664
    [3] Chen, L.S., Tang, N., Jiang, H.X. et al. J. Plant Physiol., 166 (2009),pp. 1023-1034
    [4] Chen, Z.C., Yamaji, N., Motoyama, R. et al. Plant Physiol., 159 (2012),pp. 1624-1633
    [5] Chen, Z.C., Yokosho, K., Kashino, M. et al. Plant J., 76 (2013),pp. 10-23
    [6] Dakora, F.D., Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments Plant Soil, 245 (2002),pp. 35-47
    [7] de la Fuente, J.M., Ramirez-Rodriguez, V., Cabrera-Ponce, J.L. et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis Science, 276 (1997),pp. 1566-1568
    [8] Delhaize, E., Hebb, D.M., Ryan, P.R. Plant Physiol., 125 (2001),pp. 2059-2067
    [9] Delhaize, E., Ma, J.F., Ryan, P.R. Transcriptional regulation of aluminium tolerance genes Trends Plant Sci., 17 (2012),pp. 341-348
    [10] Delhaize, E., Ryan, P.R., Randall, P.J. Plant Physiol., 103 (1993),pp. 695-702
    [11] Delhaize, E., Taylor, P., Hocking, P.J. et al. Plant Biotechnol. J., 7 (2009),pp. 391-400
    [12] Dong, D., Peng, X., Yan, X. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes Physiol. Plant, 122 (2004),pp. 190-199
    [13] Famoso, A.N., Zhao, K., Clark, R.T. et al. PLoS Genet., 7 (2011),p. e1002221
    [14] Furukawa, J., Yamaji, N., Wang, H. et al. An aluminum-activated citrate transporter in barley Plant Cell Physiol., 48 (2007),pp. 1081-1091
    [15] Gardner, W.K., Parbery, D.G., Barber, D.A. Plant Soil, 68 (1982),pp. 33-41
    [16] Gaume, A., Mächler, F., De León, C. et al. Plant Soil, 228 (2001),pp. 253-264
    [17] Gruber, B.D., Ryan, P.R., Richardson, A.E. et al. HvALMT1 from barley is involved in the transport of organic anions J. Exp. Bot., 61 (2010),pp. 1455-1467
    [18] Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review Plant Soil, 237 (2001),pp. 173-195
    [19] Hoekenga, O.A., Maron, L.G., Piñeros, M.A. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 9738-9743
    [20] Huang, C.F., Yamaji, N., Chen, Z. et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice Plant J., 69 (2012),pp. 857-867
    [21] Illmer, P., Barbato, A., Schinner, F. Soil Biol. Biochem., 27 (1995),pp. 265-270
    [22] Inostroza-Blancheteau, C., Soto, B., Ibáñez, C. et al. Mapping aluminum tolerance loci in cereals: a tool available for crop breeding Electron. J. Biotechnol., 13 (2010),pp. 1-12
    [23] Jemo, M., Abaidoo, R.C., Nolte, C. et al. Aluminum resistance of cowpea as affected by phosphorus-deficiency stress J. Plant Physiol., 164 (2007),pp. 442-451
    [24] Jones, D.L. Organic acids in the rhizosphere–a critical review Plant Soil, 205 (1998),pp. 25-44
    [25] Jones, D.L., Brassington, D.S. Sorption of organic acids in acid soils and its implications in the rhizosphere Eur. J. Soil Sci., 49 (1998),pp. 447-455
    [26] Keerthisinghe, G., Hocking, P.J., Ryan, P.R. et al. Plant Cell Environ., 21 (1998),pp. 467-478
    [27] Kiers, E.T., Duchamel, M., Beesetty, Y. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis Science, 333 (2011),pp. 880-882
    [28] Kihara, T., Wada, T., Suzuki, Y. et al. Alteration of citrate metabolism in cluster roots of white lupin Plant Cell Physiol., 44 (2003),pp. 901-908
    [29] Kirk, G.J.D., Santos, E.E., Findenegg, G.R. Plant Soil, 211 (1999),pp. 11-18
    [30] Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 46 (1995),pp. 237-260
    [31] Kochian, L.V., Hoekenga, O.A., Piñeros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency Annu. Rev. Plant Biol., 55 (2004),pp. 459-493
    [32] Koyama, H., Kawamura, A., Kihara, T. et al. Plant Cell Physiol., 41 (2000),pp. 1030-1037
    [33] Kucey, R.M.N., Janzen, H.H., Leggett, M.E. Microbial mediated increases in plant available phosphorus Adv. Agron., 42 (1989),pp. 199-228
    [34] Lazof, D.B., Goldsmith, J.G., Rufty, T.W. et al. Rapid uptake of aluminum into cells of intact soybean root tips (a microanalytical study using secondary ion mass spectrometry) Plant Physiol., 106 (1994),pp. 1107-1114
    [35] Lee, R.B., Ratcliffe, R.G., Southon, T.E. J. Exp. Bot., 41 (1990),pp. 1063-1078
    [36] Li, X.F., Zuo, F.H., Ling, G.Z. et al. Plant Soil, 325 (2009),pp. 219-229
    [37] Liang, C.Y., Piñeros, M.A., Tian, J. et al. Plant Physiol., 161 (2013),pp. 1347-1361
    [38] Liang, C.Y., Wang, J.X., Zhao, J. et al. Control of phosphate homeostasis through gene regulation in crops Curr. Opin. Plant Biol., 21 (2014),pp. 59-66
    [39] Liao, H., Wan, H.Y., Shaff, J. et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system Plant Physiol., 141 (2006),pp. 674-684
    [40] Libert, B., Franceschi, V.R. Oxalate in crop plants J. Agric. Food Chem., 35 (1987),pp. 926-938
    [41] Ligaba, A., Yamaguchi, M., Shen, H. et al. Funct. Plant Biol., 31 (2004),pp. 1075-1083
    [42] Liu, J.P., Luo, X.Y., Shaff, J. et al. Plant J., 71 (2012),pp. 327-337
    [43] López-Bucio, J., de La Vega, O.M., Guevara-García, A. et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate Nat. Biotechnol., 18 (2000),pp. 450-453
    [44] López-Bucio, J., Nieto-Jacobo, M.F., Ramírez-Rodríguez, V. et al. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils Plant Sci., 160 (2000),pp. 11-13
    [45] Lou, H.Q., Gong, Y.L., Fan, W. et al. A formate dehydrogenase confers tolerance to aluminum and low pH Plant Physiol., 171 (2016),pp. 294-305
    [46] Lü, J., Gao, X.R., Dong, Z.M. et al. Plant Cell Rep., 31 (2012),pp. 49-56
    [47] Lundström, U.S., van Breemen, N., Jongmans, A.G. Evidence for microbial decomposition of organic acids during podzolization Eur. J. Soil Sci., 46 (1995),pp. 489-496
    [48] Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops Plant Physiol., 156 (2011),pp. 1041-1049
    [49] Ma, J.F. Role of organic acids in detoxification of aluminum in higher plants Plant Cell Physiol., 41 (2000),pp. 383-390
    [50] Ma, J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants Int. Rev. Cytol., 264 (2007),pp. 225-252
    [51] Ma, J.F., Ryan, P.R., Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids Trends Plant Sci., 6 (2001),pp. 273-278
    [52] Ma, J.F., Zheng, S.J., Matsumoto, H. et al. Detoxifying aluminium with buckwheat Nature, 390 (1997),pp. 569-570
    [53] Magalhaes, J.V., Liu, J.P., Guimarães, C.T. et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum Nat. Genet., 39 (2007),pp. 1156-1161
    [54] Macklon, A.E.S., Lumsdon, D.G., Sim, A. et al. J. Exp. Bot., 47 (1996),pp. 793-803
    [55] Marschner, H.
    [56] Martin, R.B.
    [57] Melo, J.O., Lana, U.G., Pineros, M.A. et al. Plant J., 73 (2013),pp. 276-288
    [58] Neumann, G., Martinoia, E. Cluster roots – an underground adaptation for survival in extreme environments Trends Plant Sci., 7 (2002),pp. 162-167
    [59] Neumann, G., Massonneau, A., Langlade, N. et al. Ann. Bot., 85 (2000),pp. 909-919
    [60] Osorio, N.W.
    [61] Rangel, A.F., Rao, I.M., Braun, H.P. et al. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices Physiol. Plant, 138 (2010),pp. 176-190
    [62] Rouached, H., Arpat, A.B., Poirier, Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks Mol. Plant, 3 (2010),pp. 288-299
    [63] Ryan, P.R., Delhaize, E., Jones, D. Function and mechanism of organic anion exudation from plant roots Annu. Rev. Plant Physiol. Plant Mol. Biol., 52 (2001),pp. 527-560
    [64] Ryan, P.R., Ditomaso, J.M., Kochian, L.V. Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap J. Exp. Bot., 44 (1993),pp. 437-446
    [65] Ryan, P.R., Raman, H., Gupta, S. et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots Plant Physiol., 149 (2009),pp. 340-351
    [66] Ryan, P.R., Tyerman, S.D., Sasaki, T. et al. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils J. Exp. Bot., 62 (2011),pp. 9-20
    [67] Sasaki, T., Yamamoto, Y., Ezaki, B. et al. A wheat gene encoding an aluminum-activated malate transporter Plant J., 37 (2004),pp. 645-653
    [68] Schachtman, D.P., Reid, R.J., Ayling, S.M. Phosphorus uptake by plants: from soil to cell Plant Physiol., 116 (1998),pp. 447-453
    [69] Shane, M.W., Lambers, H. Cluster roots: a curiosity in context Plant Soil, 274 (2005),pp. 101-125
    [70] Shen, J., Rengel, Z., Tang, C. et al. Plant Soil, 248 (2003),pp. 199-206
    [71] Shen, R.F., Iwashita, T., Ma, J.F. Form of Al changes with Al concentration in leaves of buckwheat J. Exp. Bot., 55 (2004),pp. 131-136
    [72] Shen, R.F., Ma, J.F., Kyo, M. et al. Planta, 215 (2002),pp. 394-398
    [73] Silva, I.R., Smyth, T.J., Raper, C.D. et al. Differential aluminum tolerance in soybean: an evaluation of the role of organic acids Physiol. Plant., 112 (2001),pp. 200-210
    [74] Singh, K., Sasakuma, T., Bughio, N. et al. Ability of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiency J. Plant Nutr., 23 (2000),pp. 1973-1981
    [75] Sun, L.L., Liang, C.Y., Chen, Z.J. et al. New Phytol., 202 (2014),pp. 209-219
    [76] Sun, L.L., Tian, J., Zhang, H.Y. et al. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity J. Exp. Bot., 67 (2016),pp. 3655-3664
    [77] Tesfaye, M., Temple, S.J., Allan, D.L. et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum Plant Physiol., 127 (2001),pp. 1836-1844
    [78] Tian, J., Wang, X.R., Tong, Y.P. et al. Bioengineering and management for efficient phosphorus utilization in crops and pastures Curr. Opin. Biotechnol., 23 (2012),pp. 1-6
    [79] Vance, C.P., Uhde-Stone, C., Allan, D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource New Phytol., 157 (2003),pp. 423-447
    [80] Wang, B.L., Shen, J.B., Zhang, W.H. et al. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum New Phytol., 176 (2007),pp. 581-589
    [81] Wang, X.R., Wang, Y.X., Tian, J. et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean Plant Physiol., 151 (2009),pp. 233-240
    [82] Wang, Y., Xu, H., Kou, J. et al. Plant Soil, 362 (2013),pp. 231-246
    [83] Watt, M., Evans, J.R. Plant Physiol., 120 (1999),pp. 705-716
    [84] Whitelaw, M.A. Growth promotion of plants inoculated with phosphate-solubilizing fungi Adv. Agron., 69 (2000),pp. 99-151
    [85] Wright, D.P., Read, D.J., Scholes, J.D. Plant Cell Environ., 21 (1998),pp. 881-891
    [86] Xia, J.X., Yamaji, N., Kasai, T. et al. Plasma membrane localized transporter for aluminum in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 18381-18385
    [87] Yang, J.L., Zhu, X.F., Peng, Y.X. et al. Planta, 234 (2011),pp. 281-291
    [88] Yang, X.Y., Yang, J.L., Zhou, Y. et al. Plant Cell Environ., 34 (2011),pp. 2138-2148
    [89] Yokosho, K., Yamaji, N., Ma, J.F. Plant J., 68 (2011),pp. 1061-1069
    [90] Zhang, Z., Liao, H., Lucas, W.J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants J. Integr. Plant Biol., 56 (2014),pp. 192-220
    [91] Zhao, Y., Zhang, C., Liu, W. et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design Sci. Rep., 6 (2016),p. 23890
    [92] Zheng, S.J., Ma, J.F., Matsumoto, H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips Plant Physiol., 117 (1998),pp. 745-751
    [93] Zhou, G., Delhaize, E., Zhou, M. et al. Ann. Bot., 112 (2013),pp. 603-612
  • 加载中
计量
  • 文章访问数:  289
  • HTML全文浏览量:  111
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 录用日期:  2016-11-07
  • 修回日期:  2016-07-21
  • 网络出版日期:  2016-11-11
  • 刊出日期:  2016-11-20

目录

    /

    返回文章
    返回