留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study

Marianne Venter Leone Malan Etresia van Dyk Joanna L. Elson Francois H. van der Westhuizen

Marianne Venter, Leone Malan, Etresia van Dyk, Joanna L. Elson, Francois H. van der Westhuizen. Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study[J]. Journal of Genetics and Genomics, 2017, 44(3): 139-149. doi: 10.1016/j.jgg.2016.12.003
Citation: Marianne Venter, Leone Malan, Etresia van Dyk, Joanna L. Elson, Francois H. van der Westhuizen. Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study[J]. Journal of Genetics and Genomics, 2017, 44(3): 139-149. doi: 10.1016/j.jgg.2016.12.003

doi: 10.1016/j.jgg.2016.12.003

Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study

More Information
    Corresponding author: E-mail address: j.l.elson@ncl.ac.uk (Joanna L. Elson)
  • These authors contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Achilli, A., Olivieri, A., Pala, M. et al. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole PLoS One, 6 (2011),p. e21029
    [2] Ameh, J., Godwin, I., Obi, I. et al. The search for mitochondrial tRNALeu(UUR) A3243G mutation among type 2 diabetes mellitus patients in the Nigerian population Afr. J. Biotechnol., 10 (2011),pp. 13383-13389
    [3] American Diabetes Association Standards of medical care in diabetes Diabetes Care, 33 (2010),pp. S11-S61
    [4] Andrews, R.M., Kubacka, I., Chinnery, P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nat. Genet., 23 (1999),p. 147
    [5] Bandelt, H.-J., Forster, P., Röhl, A. Median-joining networks for inferring intraspecific phylogenies Mol. Biol. Evol., 16 (1999),pp. 37-48
    [6] Bandelt, H.-J., Forster, P., Sykes, B.C. et al. Mitochondrial portraits of human populations Genetics, 141 (1995),pp. 743-753
    [7] Cardena, M.M., Ribeiro-dos-Santos, A., Santos, S. et al. Amerindian genetic ancestry is associated with higher survival rates compared to African and European ancestry in Brazilian patients with heart failure Int. J. Cardiol., 176 (2014),pp. 527-528
    [8] Cardena, M.M., Ribeiro-Dos-Santos, A.K., Santos, S.E. et al. Mitochondrial and genomic ancestry are associated with etiology of heart failure in Brazilian patients J. Hum. Hypertens., 30 (2016),pp. 120-123
    [9] Cavadas, B., Soares, P., Camacho, R. et al. Fine time scaling of purifying selection on human nonsynonymous mtDNA mutations based on the worldwide population tree and mother-child pairs Hum. Mutat., 36 (2015),pp. 1100-1111
    [10] Chinnery, P.F., Elliott, H.R., Syed, A. et al. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study Lancet Neurol., 9 (2010),pp. 498-503
    [11] Elson, J.L., Andrews, R.M., Chinnery, P.F. et al. Analysis of European mtDNAs for recombination Am. J. Hum. Genet., 68 (2001),pp. 145-153
    [12] Elson, J.L., Herrnstadt, C., Preston, G. et al. Does the mitochondrial genome play a role in the etiology of Alzheimer's disease? Hum. Genet., 119 (2006),pp. 241-254
    [13] Elson, J.L., Turnbull, D.M., Howell, N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection Am. J. Hum. Genet., 74 (2004),pp. 229-238
    [14] Gorman, G.S., Schaefer, A.M., Ng, Y. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease Ann. Neurol., 77 (2015),pp. 753-759
    [15] Gurdasani, D., Carstensen, T., Tekola-Ayele, F. et al. The African genome variation project shapes medical genetics in Africa Nature, 517 (2015),pp. 327-332
    [16] Hamer, M., von Känel, R., Reimann, M. et al. Progression of cardiovascular risk factors in black Africans: 3 year follow up of the SABPA cohort study Atherosclerosis, 238 (2015),pp. 52-54
    [17] Hermida, R.C., Ayala, D.E., Mojon, A. et al. Differences between men and woman in ambulatory blood pressure thresholds for diagnosis of hypertension based on cardiovascular outcomes Chronobiol. Int., 30 (2013),pp. 221-232
    [18] Hernstadt, C., Elson, J.L., Fahy, E. et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African Asian, and European haplogroups Am. J. Hum. Genet., 70 (2002),pp. 1152-1171
    [19] Hernstadt, C., Howell, N. An evolutionary perspective on pathogenic mtDNA mutations: haplogroup associations of clinical disorders Mitochondrion, 4 (2004),pp. 791-798
    [20] Hollingsworth, K.G., Gorman, G.S., Trenell, M.I. et al. Cardiomyopathy is common in patients with the mitochondrial DNA m3243A>G mutation and correlates with mutation load Neuromuscul. Disord., 22 (2012),pp. 592-596
    [21] Kaufman, J.S., Dolman, L., Rushani, D. et al. The contribution of genomic research to explaining racial disparities in cardiovascular disease: a systematic review Am. J. Epidemiol., 181 (2015),pp. 464-472
    [22] Khogali, S.S., Myosi, B.M., Beattie, J.M. et al. A common mitochondrial DNA variant associated with susceptibility to dilated cardiomyopathy in two different populations Lancet, 357 (2001),pp. 1265-1267
    [23] Lammertyn, L., Schutte, A., Schutte, R. Blood glucose and nocturnal blood pressure in African and Caucasian men: the SABPA study Diabetes Res. Clin. Pract., 93 (2011),pp. 235-242
    [24] Li, B., Krishnan, V.G., Mort, M.E. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions Bioinformatics, 25 (2009),pp. 2744-2750
    [25] Liu, C., Yang, Q., Hwang, S. et al. Association of genetic variation in the mitochondrial genome with blood pressure and metabolic traits Hypertension, 60 (2012),pp. 949-956
    [26] Mahmood, S.S., Levy, D., Vasan, R.S. et al. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective Lancet, 383 (2014),pp. 999-1008
    [27] Malan, L., Hamer, M., Frasure-Smith, N. et al. Cohort profile: sympathetic activity and ambulatory blood pressure in Africans (SABPA) prospective cohort study Int. J. Epidemiol., 44 (2015),pp. 1814-1822
    [28] Mancia, G., Fagard, R., Narkiewicz, K. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European society of cardiology (ESC) J. Hypertens., 31 (2013),pp. 1281-1357
    [29] Manica, A., Amos, B., Balloux, F. et al. The effect of ancient population bottlenecks on human phenotypic variation Nature, 448 (2007),pp. 346-348
    [30] Mensah, G.A. Descriptive epidemiology of cardiovascular risk factors and diabetes in Africa Prog. Cardiovasc. Dis., 56 (2013),pp. 240-250
    [31] Moran, A., Forouzanfar, M., Sampsonc, U. et al. The epidemiology of cardiovascular diseases in Sub-Saharan Africa: the global burden of diseases, injuries and risk factors 2010 Study Prog. Cardiovasc. Dis., 56 (2013),pp. 234-239
    [32] Okin, P.M., Kjeldsen, S.E., Dahlöf, B. et al. Racial differences in incident heart failure during antihypertensive therapy Circ. Cardiovasc. Qual. Outcomes, 4 (2011),pp. 157-164
    [33] Owolabi, M.O., Mensah, G.A., Kimmel, P.A. et al. Understanding the rise in cardiovascular diseases in Africa: harmonising H3Africa genomic epidemiological teams and tools Cardiovasc. J. Afr., 25 (2014),pp. 134-136
    [34] Pereira, L., Soares, P., Radivoiac, P. et al. Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity Am. J. Hum. Genet., 88 (2011),pp. 433-439
    [35] Polzin, T., Daneschmand, S.V. On Steiner trees and minimum spanning trees in hypergraphs Oper. Res. Lett., 31 (2003),pp. 12-20
    [36] Robinson, M.T., Fischel-Ghodsian, N., Fraser, H.S. et al. Genetic influences on the increase in blood pressure with age in normotensice subjects in Barbados Ethn. Dis., 14 (2004),pp. 57-63
    [37] Rosa, A., Brehem, A. African human mtDNA phylogeography at-a-glance J. Anthropol. Sci., 89 (2011),pp. 25-58
    [38] Salas, A., Richards, M., De La Fe, T. et al. The making of the African mtDNA landscape Am. J. Hum. Genet., 71 (2002),pp. 1082-1111
    [39] Salas, A., Elson, J.L. Mitochondrial DNA as a risk factor for false positives in case-control association studies J. Genet. Genomics, 42 (2015),pp. 169-172
    [40] Samuels, D.C., Carothers, A.D., Horton, R. et al. The power to detect disease associated with mitochondrial DNA haplogroups Am. J. Hum. Genet., 78 (2006),pp. 713-720
    [41] Schutte, A.E., Schutte, R., Huisman, H.W. et al. Are behavioural risk factors to be blamed for the conversion from optimal blood pressure to hypertensive status in Black South Africans? A 5-year prospective study Int. J. Epidemiol., 14 (2012),pp. 1114-1123
    [42] Soares, P., Abrantes, D., Rito, T. et al. Evaluating purifying selection in the mitochondrial DNA of various mammalian species PLoS One, 8 (2013),p. e58993
    [43] Taylor, R.W., Giordano, C., Davidson, M.M. et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy J. Am. Coll. Cardiol., 41 (2003),pp. 1786-1796
    [44] Thusberg, J., Olatubosun, A., Vihinen, M. Performance of mutation pathogenicity prediction methods on missense variants Hum. Mutat., 32 (2011),pp. 358-368
    [45] Tuppen, H.A., Blakely, E.L., Turnbull, D.M. et al. Mitochondrial DNA mutations and human disease Biochim. Biophys. Acta, 1797 (2010),pp. 113-128
    [46] van der Walt, E.M., Smuts, I., Taylor, R.W. et al. Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease J. Hum. Genet., 20 (2012),pp. 650-656
    [47] van der Westhuizen, F.H., Sinxadi, P.Z., Dandara, C. et al. Understanding the implications of mitochondrial DNA variation in the health of Black Southern African populations: the 2014 Workshop Hum. Mutat., 36 (2015),pp. 569-571
    [48] van Oven, M., Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation Hum. Mutat., 30 (2009),pp. E386-E394
    [49] Wallace, D. Bioenergetics and the epigenome: interface between the environment and genes in common diseases Dev. Disabil. Res. Rev., 16 (2010),pp. 114-116
    [50] Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing Nucleic Acids Res., 44 (2016),pp. W58-W63
    [51] World Medical Association World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects J. Int. Bioethique, 1 (2004),p. 124
    [52] Yarham, J.W., Elson, J.L., Blakely, E.L. et al. Mitochondrial tRNA mutations and disease Wiley Interdiscip. Rev. RNA, 1 (2010),pp. 304-324
    [53] Yu, X., Koczan, D., Sulonen, A.-M. et al. mtDNA nt13708A variant increases the risk of multiple sclerosis PLoS One, 3 (2008),p. e153
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-24
  • 录用日期:  2016-12-22
  • 修回日期:  2016-12-11
  • 网络出版日期:  2016-12-26
  • 刊出日期:  2017-03-20

目录

    /

    返回文章
    返回