留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis

Lingjuan Shan Chan Wu Di Chen Lei Hou Xin Li Lixia Wang Xiao Chu Yifeng Hou Zhaohui Wang

Lingjuan Shan, Chan Wu, Di Chen, Lei Hou, Xin Li, Lixia Wang, Xiao Chu, Yifeng Hou, Zhaohui Wang. Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis[J]. Journal of Genetics and Genomics, 2017, 44(2): 95-106. doi: 10.1016/j.jgg.2016.12.007
Citation: Lingjuan Shan, Chan Wu, Di Chen, Lei Hou, Xin Li, Lixia Wang, Xiao Chu, Yifeng Hou, Zhaohui Wang. Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis[J]. Journal of Genetics and Genomics, 2017, 44(2): 95-106. doi: 10.1016/j.jgg.2016.12.007

doi: 10.1016/j.jgg.2016.12.007

Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis

More Information
    Corresponding author: E-mail address: zhwang@genetics.ac.cn (Zhaohui Wang)
  • These authors contributed equally to this study.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this study.
  • [1] An, J.J., Gharami, K., Liao, G.-Y. et al. Distinct role of long 3′UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons Cell, 134 (2008),pp. 175-187
    [2] Anderson, E.L., Baltus, A.E., Roepers-Gajadien, H.L. et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 14976-14980
    [3] Andreassi, C., Riccio, A. To localize or not to localize: mRNA fate is in 3′UTR ends Trends Cell Biol., 19 (2009),pp. 465-474
    [4] Baltus, A.E., Menke, D.B., Hu, Y.C. et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication Nat. Genet., 38 (2006),pp. 1430-1434
    [5] Baltz, A.G., Munschauer, M., Schwanhausser, B. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts Mol. Cell, 46 (2012),pp. 674-690
    [6] Batra, R., Charizanis, K., Manchanda, M. et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease Mol. Cell, 56 (2014),pp. 311-322
    [7] Berkovits, B.D., Mayr, C. Alternative 3′UTRs act as scaffolds to regulate membrane protein localization Nature, 522 (2015),pp. 363-367
    [8] Bernstein, D.S., Buter, N., Stumpf, C. et al. Analyzing mRNA-protein complexes using a yeast three-hybrid system Methods, 26 (2002),pp. 123-141
    [9] Bischof, J., Maeda, R.K., Hediger, M. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 3312-3317
    [10] Bowles, J., Knight, D., Smith, C. et al. Retinoid signaling determines germ cell fate in mice Science, 312 (2006),pp. 596-600
    [11] Chen, D., DM, M. Development, 130 (2003),pp. 1159-1170
    [12] Chen, D., McKearin, D. Gene circuitry controlling a stem cell niche Curr. Biol., 15 (2005),pp. 179-184
    [13] Chen, D., Wu, C., Zhao, S. et al. PLoS Genet., 10 (2014),p. e1004797
    [14] de Klerk, E., Venema, A., Anvar, S.Y. et al. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation Nucleic Acids Res., 40 (2012),pp. 9089-9101
    [15] Derti, A., Garrett-Engele, P., Macisaac, K.D. et al. A quantitative atlas of polyadenylation in five mammals Genome Res., 22 (2012),pp. 1173-1183
    [16] Di Giammartino, D.C., Nishida, K., Manley, J.L. Mechanisms and consequences of alternative polyadenylation Mol. Cell, 43 (2011),pp. 853-866
    [17] Eberhart, C.G., Maines, J.Z., Wasserman, S.A. Nature, 381 (1996),pp. 783-785
    [18] Fu, Z., Geng, C., Wang, H. et al. Twin promotes the maintenance and differentiation of germline stem cell lineage through modulation of multiple pathways Cell Rep., 13 (2015),pp. 1366-1379
    [19] Honigberg, S.M., Purnapatre, K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast J. Cell Sci., 116 (2003),pp. 2137-2147
    [20] Hoque, M., Ji, Z., Zheng, D. et al. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing Nat. Methods, 10 (2013),pp. 133-139
    [21] Insco, M.L., Bailey, A.S., Kim, J. et al. A self-limiting switch based on translational control regulates the transition from proliferation to differentiation in an adult stem cell lineage Cell Stem Cell, 11 (2012),pp. 689-700
    [22] Insco, M.L., Leon, A., Tam, C.H. et al. Accumulation of a differentiation regulator specifies transit amplifying division number in an adult stem cell lineage Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 22311-22316
    [23] Jenal, M., Elkon, R., Loayza-Puch, F. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites Cell, 149 (2012),pp. 538-553
    [24] Ji, Z., Lee, J.Y., Pan, Z. et al. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 7028-7033
    [25] Ji, Z., Tian, B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types PLoS One, 4 (2009),p. e8419
    [26] Jin, Z., Kirilly, D., Weng, C. et al. Cell Stem Cell, 2 (2008),pp. 39-49
    [27] Kim, D., Pertea, G., Trapnell, C. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions Genome Biol., 14 (2013),p. R36
    [28] Kim, S., Yamamoto, J., Chen, Y. et al. Evidence that cleavage factor Im is a heterotetrameric protein complex controlling alternative polyadenylation Genes Cells, 15 (2010),pp. 1003-1013
    [29] Koubova, J., Menke, D.B., Zhou, Q. et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 2474-2479
    [30] Kubo, T., Wada, T., Yamaguchi, Y. et al. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs Nucleic Acids Res., 34 (2006),pp. 6264-6271
    [31] Lackford, B., Yao, C., Charles, G.M. et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal EMBO J., 33 (2014),pp. 878-889
    [32] Li, C.Y., Guo, Z., Wang, Z. Dev. Biol., 309 (2007),pp. 70-77
    [33] Li, W., Park, J.Y., Zheng, D. et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control BMC Biol., 14 (2016),p. 6
    [34] Lin, Y., Gill, M.E., Koubova, J. et al. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos Science, 322 (2008),pp. 1685-1687
    [35] Mangone, M., Manoharan, A.P., Thierry-Mieg, D. et al. Science, 329 (2010),pp. 432-435
    [36] Martin, G., Gruber, A.R., Keller, W. et al. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′UTR length Cell Rep., 1 (2012),pp. 753-763
    [37] Masamha, C.P., Xia, Z., Yang, J. et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression Nature, 510 (2014),pp. 412-416
    [38] Mayr, C. Evolution and biological roles of alternative 3′UTRs Trends Cell Biol., 26 (2016),pp. 227-237
    [39] Mayr, C., Bartel, D.P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells Cell, 138 (2009),pp. 673-684
    [40] McKearin, D., Ohlstein, B. Development, 121 (1995),pp. 2937-2947
    [41] Norbury, C.J. Cytoplasmic RNA: a case of the tail wagging the dog Nat. Rev. Mol. Cell Biol., 14 (2013),pp. 643-653
    [42] Ohlstein, B., Lavoie, C.A., Vef, O. et al. Genetics, 155 (2000),pp. 1809-1819
    [43] Ozsolak, F., Kapranov, P., Foissac, S. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation Cell, 143 (2010),pp. 1018-1029
    [44] Parker, R., Song, H. The enzymes and control of eukaryotic mRNA turnover Nat. Struct. Mol. Biol., 11 (2004),pp. 121-127
    [45] Pinto, P.A.B., Henriques, T., Freitas, M.O. et al. EMBO J., 30 (2011),pp. 2431-2444
    [46] Sandberg, R., Neilson, J.R., Sarma, A. et al. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites Science, 320 (2008),pp. 1643-1647
    [47] Shepard, P.J., Choi, E.A., Lu, J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq RNA, 17 (2011),pp. 761-772
    [48] Shi, Y. Alternative polyadenylation: new insights from global analyses RNA, 18 (2012),pp. 2105-2117
    [49] Smibert, P., Miura, P., Westholm, J.O. et al. Cell Rep., 1 (2012),pp. 277-289
    [50] Sun, Y.C., Cheng, S.F., Sun, R. et al. J. Genet. Genomics, 41 (2014),pp. 87-95
    [51] Suzuki, A., Hirasaki, M., Hishida, T. et al. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells Nat. Commun., 7 (2016),p. 11056
    [52] Takagaki, Y., Manley, J.L. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation Mol. Cell, 2 (1998),pp. 761-771
    [53] Takagaki, Y., Seipelt, R.L., Peterson, M.L. et al. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation Cell, 87 (1996),pp. 941-952
    [54] Trapnell, C., Hendrickson, D.G., Sauvageau, M. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq Nat. Biotechnol., 31 (2013),pp. 46-53
    [55] Ulitsky, I., Shkumatava, A., Jan, C.H. et al. Extensive alternative polyadenylation during zebrafish development Genome Res., 22 (2012),pp. 2054-2066
    [56] Wahle, E., Winkler, G.S. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes Biochim. Biophys. Acta, 1829 (2013),pp. 561-570
    [57] Wolf, J., Passmore, L.A. mRNA deadenylation by Pan2-Pan3 Biochem. Soc. Trans., 42 (2014),pp. 184-187
    [58] Wu, X., Liu, M., Downie, B. et al. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 12533-12538
    [59] Xu, E.Y., Lee, D.F., Klebes, A. et al. Hum. Mol. Genet., 12 (2003),pp. 169-175
    [60] Zhao, S., Chen, D., Geng, Q. et al. Dev. Biol., 376 (2013),pp. 163-170
    [61] Zheng, D., Tian, B. RNA-binding proteins in regulation of alternative cleavage and polyadenylation Adv. Exp. Med. Biol., 825 (2014),pp. 97-127
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  55
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 录用日期:  2016-12-28
  • 修回日期:  2016-12-14
  • 网络出版日期:  2017-01-27
  • 刊出日期:  2017-02-20

目录

    /

    返回文章
    返回