留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HCSGD: An integrated database of human cellular senescence genes

Qiongye Dong Hongqing Han Xuehui Liu Lei Wei Wei Zhang Zhen Zhao Michael Q. Zhang Xiaowo Wang

Qiongye Dong, Hongqing Han, Xuehui Liu, Lei Wei, Wei Zhang, Zhen Zhao, Michael Q. Zhang, Xiaowo Wang. HCSGD: An integrated database of human cellular senescence genes[J]. Journal of Genetics and Genomics, 2017, 44(5): 227-234. doi: 10.1016/j.jgg.2017.04.001
Citation: Qiongye Dong, Hongqing Han, Xuehui Liu, Lei Wei, Wei Zhang, Zhen Zhao, Michael Q. Zhang, Xiaowo Wang. HCSGD: An integrated database of human cellular senescence genes[J]. Journal of Genetics and Genomics, 2017, 44(5): 227-234. doi: 10.1016/j.jgg.2017.04.001

doi: 10.1016/j.jgg.2017.04.001

HCSGD: An integrated database of human cellular senescence genes

More Information
    Corresponding author: E-mail address: xwwang@tsinghua.edu.cn (Xiaowo Wang)
  • These authors contribute equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  
    These authors contribute equally to this work.
  • [1] Baker, D.J., Childs, B.G., Durik, M. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan Nature, 530 (2016),pp. 184-189
    [2] Baker, D.J., Wijshake, T., Tchkonia, T. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders Nature, 479 (2011),pp. 232-236
    [3] Beausejour, C.M., Krtolica, A., Galimi, F. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways EMBO J., 22 (2003),pp. 4212-4222
    [4] Breitling, R., Armengaud, P., Amtmann, A. et al. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments FEBS Lett., 573 (2004),pp. 83-92
    [5] Campisi, J. Aging, cellular senescence, and cancer Annu. Rev. Physiol., 75 (2013),pp. 685-705
    [6] Chang, J., Wang, Y., Shao, L. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice Nat. Med., 22 (2016),pp. 78-83
    [7] Cohn, L.D., Becker, B.J. How meta-analysis increases statistical power Psychol. Methods, 8 (2003),pp. 243-253
    [8] Collado, M., Blasco, M.A., Serrano, M. Cellular senescence in cancer and aging Cell, 130 (2007),pp. 223-233
    [9] Coppe, J.P., Patil, C.K., Rodier, F. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor PLoS Biol., 6 (2008),pp. 2853-2868
    [10] de Magalhaes, J.P., Budovsky, A., Lehmann, G. et al. The Human Ageing Genomic Resources: online databases and tools for biogerontologists Aging Cell, 8 (2009),pp. 65-72
    [11] Edgar, R., Domrachev, M., Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository Nucleic Acids Res., 30 (2002),pp. 207-210
    [12] Fan, T., Jiang, S., Chung, N. et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression Mol. Cancer Res., 9 (2011),pp. 418-429
    [13] Gaulton, A., Bellis, L.J., Bento, A.P. et al. ChEMBL: a large-scale bioactivity database for drug discovery Nucleic Acids Res., 40 (2012),pp. D1100-D1107
    [14] Giaimo, S., d'Adda di Fagagna, F. Is cellular senescence an example of antagonistic pleiotropy? Aging Cell, 11 (2012),pp. 378-383
    [15] Harris, M.A., Clark, J., Ireland, A. et al. The Gene Ontology (GO) database and informatics resource Nucleic Acids Res., 32 (2004),pp. D258-D261
    [16] Hayflick, L., Moorhead, P.S. The serial cultivation of human diploid cell strains Exp. Cell Res., 25 (1961),pp. 585-621
    [17] Hedges, L.V., Pigott, T.D. The power of statistical tests in meta-analysis Psychol. Methods, 6 (2001),pp. 203-217
    [18] Hsu, S.D., Tseng, Y.T., Shrestha, S. et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions Nucleic Acids Res., 42 (2014),pp. D78-D85
    [19] Kozomara, A., Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data Nucleic Acids Res., 42 (2014),pp. D68-D73
    [20] Lage, K., Karlberg, E.O., Storling, Z.M. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders Nat. Biotechnol., 25 (2007),pp. 309-316
    [21] Lee, H.K., Hsu, A.K., Sajdak, J. et al. Coexpression analysis of human genes across many microarray data sets Genome Res., 14 (2004),pp. 1085-1094
    [22] Leek, J.T., Scharpf, R.B., Bravo, H.C. et al. Tackling the widespread and critical impact of batch effects in high-throughput data Nat. Rev. Genet., 11 (2010),pp. 733-739
    [23] Li, S., Wu, L., Zhang, Z. Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach Bioinformatics, 22 (2006),pp. 2143-2150
    [24] Li, Z., Zhao, Y., Liu, X. et al. LSD 2.0: an update of the leaf senescence database Nucleic Acids Res., 42 (2014),pp. D1200-D1205
    [25] Maglott, D., Ostell, J., Pruitt, K.D. et al. Entrez Gene: gene-centered information at NCBI Nucleic Acids Res., 33 (2005),pp. D54-D58
    [26] Moreau, Y., Tranchevent, L.C. Computational tools for prioritizing candidate genes: boosting disease gene discovery Nat. Rev. Genet., 13 (2012),pp. 523-536
    [27] Munoz-Espin, D., Serrano, M. Cellular senescence: from physiology to pathology Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 482-496
    [28] Overhoff, M.G., Garbe, J.C., Koh, J. et al. Cellular senescence mediated by p16INK4A-coupled miRNA pathways Nucleic Acids Res., 42 (2014),pp. 1606-1618
    [29] Ozgur, A., Xiang, Z., Radev, D.R. et al. Mining of vaccine-associated IFN-gamma gene interaction networks using the Vaccine Ontology J. Biomed. Semant., 2 (2011),p. S8
    [30] Peri, S., Navarro, J.D., Kristiansen, T.Z. et al. Human protein reference database as a discovery resource for proteomics Nucleic Acids Res., 32 (2004),pp. D497-D501
    [31] Rodier, F., Campisi, J. Four faces of cellular senescence J. Cell Biol., 192 (2011),pp. 547-556
    [32] Schmid, P.R., Palmer, N.P., Kohane, I.S. et al. Making sense out of massive data by going beyond differential expression Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 5594-5599
    [33] Schwikowski, B., Uetz, P., Fields, S. A network of protein-protein interactions in yeast Nat. Biotechnol., 18 (2000),pp. 1257-1261
    [34] Stuart, J.M., Segal, E., Koller, D. et al. A gene-coexpression network for global discovery of conserved genetic modules Science, 302 (2003),pp. 249-255
    [35] UniProt, C. UniProt: a hub for protein information Nucleic Acids Res., 43 (2015),pp. D204-D212
    [36] van Deursen, J.M. The role of senescent cells in ageing Nature, 509 (2014),pp. 439-446
    [37] Wishart, D.S., Knox, C., Guo, A.C. et al. Nucleic Acids Res., 34 (2006),pp. D668-D672
    [38] Xiao, F., Zuo, Z., Cai, G. et al. miRecords: an integrated resource for microRNA-target interactions Nucleic Acids Res., 37 (2009),pp. D105-D110
    [39] Yoav Benjamini, Y.H. Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc. B, 57 (1995),pp. 289-300
    [40] Ziehm, M., Thornton, J.M. Unlocking the potential of survival data for model organisms through a new database and online analysis platform: SurvCurv Aging Cell, 12 (2013),pp. 910-916
  • 加载中
计量
  • 文章访问数:  146
  • HTML全文浏览量:  59
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 录用日期:  2017-04-10
  • 修回日期:  2017-04-04
  • 网络出版日期:  2017-04-29
  • 刊出日期:  2017-05-20

目录

    /

    返回文章
    返回