留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia

Jinsong Tang Yu Fan Hong Li Qun Xiang Deng-Feng Zhang Zongchang Li Ying He Yanhui Liao Ya Wang Fan He Fengyu Zhang Yin Yao Shugart Chunyu Liu Yanqing Tang Raymond C.K. Chan Chuan-Yue Wang Yong-Gang Yao Xiaogang Chen

Jinsong Tang, Yu Fan, Hong Li, Qun Xiang, Deng-Feng Zhang, Zongchang Li, Ying He, Yanhui Liao, Ya Wang, Fan He, Fengyu Zhang, Yin Yao Shugart, Chunyu Liu, Yanqing Tang, Raymond C.K. Chan, Chuan-Yue Wang, Yong-Gang Yao, Xiaogang Chen. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia[J]. Journal of Genetics and Genomics, 2017, 44(6): 295-306. doi: 10.1016/j.jgg.2017.05.005
Citation: Jinsong Tang, Yu Fan, Hong Li, Qun Xiang, Deng-Feng Zhang, Zongchang Li, Ying He, Yanhui Liao, Ya Wang, Fan He, Fengyu Zhang, Yin Yao Shugart, Chunyu Liu, Yanqing Tang, Raymond C.K. Chan, Chuan-Yue Wang, Yong-Gang Yao, Xiaogang Chen. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia[J]. Journal of Genetics and Genomics, 2017, 44(6): 295-306. doi: 10.1016/j.jgg.2017.05.005

doi: 10.1016/j.jgg.2017.05.005

Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Abyzov, A., Urban, A.E., Snyder, M. et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing Genome Res., 21 (2011),pp. 974-984
    [2] Addington, A.M., Gornick, M., Duckworth, J. et al. Mol. Psychiatry, 10 (2005),pp. 581-588
    [3] Adzhubei, I., Jordan, D.M., Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2 Cur. Protoc. Hum. Genet., Unit 7 (2013),p. 20
    [4] Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Med., 7 (2010),pp. 248-249
    [5] Ahn, K., An, S.S., Shugart, Y.Y. et al. Common polygenic variation and risk for childhood-onset schizophrenia Mol. Psychiatry, 21 (2016),pp. 94-96
    [6] , Mukherjee, N., Bandaru, P., Miller, J.B. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression Nature, 492 (2012),pp. 382-386
    [7] Bae, B.I., Tietjen, I., Atabay, K.D. et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning Science, 343 (2014),pp. 764-768
    [8] Baranzini, S.E., Mudge, J., van Velkinburgh, J.C. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis Nature, 464 (2010),pp. 1351-1356
    [9] Bhagwat, M. Searching NCBI's dbSNP database Cur. Protoc. Bioinforma., Unit 1 (2010),p. 19
    [10] Bolger, A.M., Lohse, M., Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics, 30 (2014),pp. 2114-2120
    [11] Boyle, A.P., Hong, E.L., Hariharan, M. et al. Annotation of functional variation in personal genomes using RegulomeDB Genome Res., 22 (2012),pp. 1790-1797
    [12] Bradshaw, N.J., Soares, D.C., Carlyle, B.C. et al. PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1 J. Neurosci., 31 (2011),pp. 9043-9054
    [13] Brandon, N.J., Sawa, A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1 Nat. Rev. Neurosci., 12 (2011),pp. 707-722
    [14] Brown, D.A., Hughes, S.A., Marsh, S.J. et al. Regulation of M(Kv7.2/7.3) channels in neurons by PIP(2) and products of PIP(2) hydrolysis: significance for receptor-mediated inhibition J. Physiol., 582 (2007),pp. 917-925
    [15] Burdick, K.E., Kamiya, A., Hodgkinson, C.A. et al. Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding Hum. Mol. Genet., 17 (2008),pp. 2462-2473
    [16] Chaiyasap, P., Kulawonganunchai, S., Srichomthong, C. et al. Whole genome and exome sequencing of monozygotic twins with trisomy 21, discordant for a congenital heart defect and epilepsy PLoS One, 9 (2014),p. e100191
    [17] Chen, C., Cheng, L., Grennan, K. et al. Two gene co-expression modules differentiate psychotics and controls Mol. Psychiatry, 18 (2013),pp. 1308-1314
    [18] Chen, K., Wallis, J.W., McLellan, M.D. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation Nat. Methods, 6 (2009),pp. 677-681
    [19] Chun, S., Fay, J.C. Identification of deleterious mutations within three human genomes Genome Res., 19 (2009),pp. 1553-1561
    [20] Clough, E., Barrett, T. The gene expression omnibus database Methods Mol. Biol., 1418 (2016),pp. 93-110
    [21] CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects Nat. Genet., 49 (2017),pp. 27-35
    [22] Costa, E., Chen, Y., Davis, J. et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome Mol. Interv., 2 (2002),pp. 47-57
    [23] Darnell, J.C., Van Driesche, S.J., Zhang, C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism Cell, 146 (2011),pp. 247-261
    [24] Dempster, E.L., Pidsley, R., Schalkwyk, L.C. et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder Hum. Mol. Genet., 20 (2011),pp. 4786-4796
    [25] DePristo, M.A., Banks, E., Poplin, R. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data Nat. Genet., 43 (2011),pp. 491-498
    [26] Donohoe, G., Walters, J., Hargreaves, A. et al. Genes Brain Behav., 12 (2013),pp. 203-209
    [27] Emamian, E.S., Hall, D., Birnbaum, M.J. et al. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia Nat. Genet., 36 (2004),pp. 131-137
    [28] Fromer, M., Pocklington, A.J., Kavanagh, D.H. et al. Nature, 506 (2014),pp. 179-184
    [29] Gai, X., Xie, H.M., Perin, J.C. et al. Rare structural variation of synapse and neurotransmission genes in autism Mol. Psychiatry, 17 (2012),pp. 402-411
    [30] Gauthier, J., Siddiqui, T.J., Huashan, P. et al. Hum. Genet., 130 (2011),pp. 563-573
    [31] Genome of the Netherlands Consortium Whole-genome sequence variation, population structure and demographic history of the Dutch population Nat. Genet., 46 (2014),pp. 818-825
    [32] Goff, D.C., Coyle, J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia Am. J. Psychiatry, 158 (2001),pp. 1367-1377
    [33] Green, E.K., Grozeva, D., Jones, I. et al. Mol. Psychiatry, 15 (2010),pp. 1016-1022
    [34] Hakak, Y., Walker, J.R., Li, C. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 4746-4751
    [35] Haldane, J.B. The rate of spontaneous mutation of a human gene. 1935 J. Genet., 83 (2004),pp. 235-244
    [36] Hodgkinson, C.A., Goldman, D., Jaeger, J. et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder Am. J. Hum. Genet., 75 (2004),pp. 862-872
    [37] Huang, Q. Genetic study of complex diseases in the post-GWAS era J. Genet. Genomics, 41 (2015),pp. 87-98
    [38] International Schizophrenia, Consortium, Purcell, S.M., Wray, N.R., Stone, J.L. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature, 460 (2009),pp. 748-752
    [39] Iossifov, I., Ronemus, M., Levy, D. et al. Neuron, 74 (2012),pp. 285-299
    [40] Jia, P., Sun, J., Guo, A.Y. et al. SZGR: a comprehensive schizophrenia gene resource Mol. Psychiatry, 15 (2010),pp. 453-462
    [41] Jiang, Y.H., Yuen, R.K., Jin, X. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing Am. J. Hum. Genet., 93 (2013),pp. 249-263
    [42] Kang, E., Burdick, K.E., Kim, J.Y. et al. Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia Neuron, 72 (2011),pp. 559-571
    [43] Kirov, G., Pocklington, A.J., Holmans, P. et al. Mol. Psychiatry, 17 (2012),pp. 142-153
    [44] Koiliari, E., Roussos, P., Pasparakis, E. et al. Schizophr. Res., 154 (2014),pp. 42-47
    [45] Kong, A., Frigge, M.L., Masson, G. et al. Nature, 488 (2012),pp. 471-475
    [46] Koren, A., Polak, P., Nemesh, J. et al. Differential relationship of DNA replication timing to different forms of human mutation and variation Am. J. Hum. Genet., 91 (2012),pp. 1033-1040
    [47] Kraft, P., Hunter, D.J. Genetic risk prediction–are we there yet? N. Engl. J. Med., 360 (2009),pp. 1701-1703
    [48] Kumar, P., Henikoff, S., Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm Nat. Protoc., 4 (2009),pp. 1073-1081
    [49] Kwon, E., Wang, W., Tsai, L.H. Mol. Psychiatry, 18 (2013),pp. 11-12
    [50] Lanoue, V., Usardi, A., Sigoillot, S.M. et al. Mol. Psychiatry, 18 (2013),pp. 943-950
    [51] Lanz, T.A., Joshi, J.J., Reinhart, V. et al. STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder PLoS One, 10 (2015),p. e0121744
    [52] Layer, R.M., Chiang, C., Quinlan, A.R. et al. LUMPY: a probabilistic framework for structural variant discovery Genome Biol., 15 (2014),p. R84
    [53] Lee, S.H., DeCandia, T.R., Ripke, S. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs Nat. Genet., 44 (2012),pp. 247-250
    [54] Lee, Y.H., Kim, J.H., Song, G.G. Pathway analysis of a genome-wide association study in schizophrenia Gene, 525 (2013),pp. 107-115
    [55] Li, H., Bi, R., Fan, Y. et al. mtDNA heteroplasmy in monozygotic twins discordant for schizophrenia Mol. Neurobiol. (2017)
    [56] Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [57] Li, J., Cai, T., Jiang, Y. et al. Mol. Psychiatry, 21 (2016),pp. 290-297
    [58] Li, M., Weinberger, D.R. Illuminating the dark road from schizophrenia genetic associations to disease mechanisms Natl. Sci. Rev., 4 (2017),pp. 240-251
    [59] Li, X., Gao, X., Liu, G. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling Nat. Neurosci., 11 (2008),pp. 28-35
    [60] Liu, H., Abecasis, G.R., Heath, S.C. et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 16859-16864
    [61] Liu, X., Wu, C., Li, C. et al. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs Hum. Mutat., 37 (2016),pp. 235-241
    [62] Luo, X., Huang, L., Han, L. et al. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes Schizophr. Bull., 40 (2014),pp. 1285-1299
    [63] Ma, L., Tang, J., Wang, D. et al. Evaluating risk loci for schizophrenia distilled from genome-wide association studies in Han Chinese from Central China Mol. Psychiatry, 18 (2013),pp. 638-639
    [64] Malaspina, D. Schizophr. Bull., 27 (2001),pp. 379-393
    [65] Malenka, R.C., Nicoll, R.A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms Trends Neurosci., 16 (1993)
    [66] McCarthy, M.I., Abecasis, G.R., Cardon, L.R. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges Nat. Rev. Genet., 9 (2008),pp. 356-369
    [67] McClellan, J., King, M.C. Genetic heterogeneity in human disease Cell, 141 (2010),pp. 210-217
    [68] McClellan, J.M., Susser, E., King, M.C. Schizophrenia: a common disease caused by multiple rare alleles Br. J. Psychiatry, 190 (2007),pp. 194-199
    [69] McKenna, A., Hanna, M., Banks, E. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome Res., 20 (2010),pp. 1297-1303
    [70] Michaelson, J.J., Shi, Y., Gujral, M. et al. Cell, 151 (2012),pp. 1431-1442
    [71] Missler, M., Hammer, R.E., Sudhof, T.C. Neurexophilin binding to alpha-neurexins: a single LNS domain functions as an independently folding ligand-binding unit J. Biol. Chem., 273 (1998),pp. 34716-34723
    [72] Montojo, J., Zuberi, K., Rodriguez, H. et al. GeneMANIA: fast gene network construction and function prediction for Cytoscape F1000Res., 3 (2014),p. 153
    [73] Need, A.C., McEvoy, J.P., Gennarelli, M. et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia Am. J. Hum. Genet., 91 (2012),pp. 303-312
    [74] Ng, P.C. SIFT: predicting amino acid changes that affect protein function Nucleic Acids Res., 31 (2003),pp. 3812-3814
    [75] Nyegaard, M., Demontis, D., Foldager, L. et al. Mol. Psychiatry, 15 (2010),pp. 119-121
    [76] Park, D., Tosello-Trampont, A.C., Elliott, M.R. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module Nature, 450 (2007),pp. 430-434
    [77] Persico, A.M., D'Agruma, L., Maiorano, N. et al. Mol. Psychiatry, 6 (2001),pp. 150-159
    [78] Petersen, B.S., Spehlmann, M.E., Raedler, A. et al. Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease BMC Genomics, 15 (2014),p. 564
    [79] Rausch, T., Zichner, T., Schlattl, A. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis Bioinformatics, 28 (2012),pp. i333-i339
    [80] Ripke, S., O'Dushlaine, C., Chambert, K. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia Nat. Genet., 45 (2013),pp. 1150-1159
    [81] Rose, E.J., Morris, D.W., Hargreaves, A. et al. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 162 (2013),pp. 530-537
    [82] Rossin, E.J., Lage, K., Raychaudhuri, S. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology PLoS Genet., 7 (2011),p. e1001273
    [83] Roth, T.L., Lubin, F.D., Sodhi, M. et al. Epigenetic mechanisms in schizophrenia Biochim. Biophys. Acta, 1790 (2009),pp. 869-877
    [84] Roussos, P., Mitchell, A.C., Voloudakis, G. et al. A role for noncoding variation in schizophrenia Cell Rep., 9 (2014),pp. 1417-1429
    [85] Saha, S., Chant, D., Welham, J. et al. A systematic review of the prevalence of schizophrenia PLoS Med., 2 (2005),p. e141
    [86] Schizophrenia Psychiatric Genome-Wide Association Study Consortium Genome-wide association study identifies five new schizophrenia loci Nat. Genet., 43 (2011),pp. 969-976
    [87] Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci Nature, 511 (2014),pp. 421-427
    [88] Schwab, S.G., Hoefgen, B., Hanses, C. et al. Biol. Psychiatry, 58 (2005),pp. 446-450
    [89] Schwarz, J.M., Cooper, D.N., Schuelke, M. et al. MutationTaster2: mutation prediction for the deep-sequencing age Nat. Med., 11 (2014),pp. 361-362
    [90] Sebat, J., Levy, D.L., McCarthy, S.E. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders Trends Genet., 25 (2009),pp. 528-535
    [91] Seripa, D., Matera, M.G., Franceschi, M. et al. J. Alzheimers Dis., 14 (2008),pp. 335-344
    [92] Shi, L. Dock protein family in brain development and neurological disease Commun. Integr. Biol., 6 (2013),p. e26839
    [93] Shi, Y., Li, Z., Xu, Q. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia Nat. Genet., 43 (2011),pp. 1224-1227
    [94] Shifman, S., Johannesson, M., Bronstein, M. et al. PLoS Genet., 4 (2008),p. e28
    [95] Shu, T., Ayala, R., Nguyen, M.D. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning Neuron, 44 (2004),pp. 263-277
    [96] Stefansson, H., Meyer-Lindenberg, A., Steinberg, S. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls Nature, 505 (2014),pp. 361-366
    [97] Straub, R.E., Lipska, B.K., Egan, M.F. et al. Mol. Psychiatry, 12 (2007),pp. 854-869
    [98] Sudmant, P.H., Rausch, T., Gardner, E.J. et al. An integrated map of structural variation in 2,504 human genomes Nature, 526 (2015),pp. 75-81
    [99] Sullivan, P.F., Daly, M.J., O'Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications Nat. Rev. Genet., 13 (2012),pp. 537-551
    [100] Sullivan, P.F., Kendler, K.S., Neale, M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies Arch. Gen. Psychiatry, 60 (2003),pp. 1187-1192
    [101] Thomson, P.A., Parla, J.S., McRae, A.F. et al. Mol. Psychiatry, 19 (2014),pp. 668-675
    [102] Tissir, F., Goffinet, A.M. Reelin and brain development Nat. Rev. Neurosci., 4 (2003),pp. 496-505
    [103] Tsuboi, D., Kuroda, K., Tanaka, M. et al. Nat. Neurosci., 18 (2015),pp. 698-707
    [104] Wang, Q., Li, M., Yang, Z. et al. Sci. Rep., 5 (2015),p. 18209
    [105] Ward, L.D., Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease Nat. Biotechnol., 30 (2012),pp. 1095-1106
    [106] Winberg, M.L., Noordermeer, J.N., Tamagnone, L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance Cell, 95 (1998),pp. 903-916
    [107] Wu, Q., Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes Cell, 97 (1999),pp. 779-790
    [108] Wu, Y., Yao, Y.G., Luo, X.J. SZDB: a database for schizophrenia genetic research Schizophr. Bull., 43 (2017),pp. 459-471
    [109] Xiao, X., Chang, H., Li, M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies Mol. Psychiatry, 22 (2017),pp. 497-511
    [110] Xu, B., Roos, J.L., Levy, S. et al. Nat. Genet., 40 (2008),pp. 880-885
    [111] Yamada, K., Nakamura, K., Minabe, Y. et al. Biol. Psychiatry, 56 (2004),pp. 683-690
    [112] Yang, T.P., Beazley, C., Montgomery, S.B. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies Bioinformatics, 26 (2010),pp. 2474-2476
    [113] Ye, K., Schulz, M.H., Long, Q. et al. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads Bioinformatics, 25 (2009),pp. 2865-2871
    [114] Yue, W.H., Wang, H.F., Sun, L.D. et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2 Nat. Genet., 43 (2011),pp. 1228-1231
    [115] Yuen, R.K., Thiruvahindrapuram, B., Merico, D. et al. Whole-genome sequencing of quartet families with autism spectrum disorder Nat. Med., 21 (2015),pp. 185-191
    [116] Zong, X.F., Hu, M.L., Li, Z.C. et al. DNA methylation in schizophrenia: progress and challenges Sci. Bull., 60 (2015),pp. 149-155
    [117] Zuk, O., Schaffner, S.F., Samocha, K. et al. Searching for missing heritability: designing rare variant association studies Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. E455-E464
  • 加载中
计量
  • 文章访问数:  138
  • HTML全文浏览量:  62
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 录用日期:  2017-05-09
  • 修回日期:  2017-04-29
  • 网络出版日期:  2017-06-08
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回