留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cold-induced retrotransposition of fish LINEs

Shue Chen Mengchao Yu Xu Chu Wenhao Li Xiujuan Yin Liangbiao Chen

Shue Chen, Mengchao Yu, Xu Chu, Wenhao Li, Xiujuan Yin, Liangbiao Chen. Cold-induced retrotransposition of fish LINEs[J]. Journal of Genetics and Genomics, 2017, 44(8): 385-394. doi: 10.1016/j.jgg.2017.07.002
Citation: Shue Chen, Mengchao Yu, Xu Chu, Wenhao Li, Xiujuan Yin, Liangbiao Chen. Cold-induced retrotransposition of fish LINEs[J]. Journal of Genetics and Genomics, 2017, 44(8): 385-394. doi: 10.1016/j.jgg.2017.07.002

doi: 10.1016/j.jgg.2017.07.002

Cold-induced retrotransposition of fish LINEs

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Aizawa, Y., Xiang, Q., Lambowitz, A.M. et al. The pathway for DNA recognition and RNA integration by a group II intron retrotransposon Mol. Cell, 11 (2003),pp. 795-805
    [2] Alves, G., Kawamura, M.T., Nascimento, P. et al. DNA release by line-1 (L1) retrotransposon. could it be possible? Ann. N. Y. Acad. Sci., 906 (2000),pp. 129-133
    [3] Beck, C.R., Garcia-Perez, J.L., Badge, R.M. et al. LINE-1 elements in structural variation and disease Annu. Rev. Genom. Hum. G., 12 (2011),pp. 187-215
    [4] Benhar, M., Engelberg, D., Levitzki, A. ROS, stress-activated kinases and stress signaling in cancer EMBO Rep., 3 (2002),pp. 420-425
    [5] Burch, J., Davis, D.L., Haas, N.B. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons Proc. Natl. Acad. Sci. U. S. A., 90 (1993),pp. 8199-8203
    [6] Cargnello, M., Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases Microbiol. Mol. Biol. Rev., 75 (2011),pp. 50-83
    [7] Chen, Z., Cheng, C.H., Zhang, J. et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 12944-12949
    [8] Chouchani, E.T., Kazak, L., Jedrychowski, M.P. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 Nature, 532 (2016),pp. 112-116
    [9] Cook, P.R., Jones, C.E., Furano, A.V. Phosphorylation of ORF1p is required for L1 retrotransposition Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 4298-4303
    [10] Coufal, N.G., Garcia-Perez, J.L., Peng, G.E. et al. L1 retrotransposition in human neural progenitor cells Nature, 460 (2009),pp. 1127-1131
    [11] Del Re, B., Marcantonio, P., Capri, M. et al. Exp. Cell Res., 316 (2010),pp. 3358-3367
    [12] Del Re, B., Marcantonio, P., Gavoci, E. et al. Assessing LINE-1 retrotransposition activity in neuroblastoma cells exposed to extremely low-frequency pulsed magnetic fields Mutat. Res., 749 (2012),pp. 76-81
    [13] Denli, A.M., Narvaiza, I., Kerman, B.E. et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity Cell, 163 (2015),pp. 583-593
    [14] Dolado, I., Swat, A., Ajenjo, N. et al. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis Cancer Cell, 11 (2007),pp. 191-205
    [15] Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res., 32 (2004),pp. 1792-1797
    [16] Eickbush, T., Malik, H.
    [17] El-Sawy, M., Kale, S.P., Dugan, C. et al. Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism J. Mol. Biol., 354 (2005),pp. 246-257
    [18] Farkash, E.A., Kao, G.D., Horman, S.R. et al. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay Nucleic Acids Res., 34 (2006),pp. 1196-1204
    [19] Furano, A.V., Duvernell, D.D., Boissinot, S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish Trends Genet., 20 (2004),pp. 9-14
    [20] Giorgi, G., Marcantonio, P., Del Re, B. LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress Cell Tissue Res., 346 (2011),pp. 383-391
    [21] Goodier, J.L. Restricting retrotransposons: a review Mob. DNA, 7 (2016),p. 16
    [22] Goodier, J.L., Retrotransposons revisited: the restraint and rehabilitation of parasites Cell, 135 (2008),pp. 23-35
    [23] Gouy, M., Guindon, S., Gascuel, O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building Mol. Biol. Evol., 27 (2010),pp. 221-224
    [24] Hawkins, J.S., Kim, H., Nason, J.D. et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium Genome Res., 16 (2006),pp. 1252-1261
    [25] Jeffery, N. The first genome size estimates for six species of krill (Malacostraca, Euphausiidae): large genomes at the north and south poles Polar Biol., 35 (2012),pp. 959-962
    [26] Johnston, I.A., Dunn, J. Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish Symp. Soc. Exp. Biol., 41 (1987),pp. 67-93
    [27] Kale, S.P., Moore, L., Deininger, P.L. et al. Heavy metals stimulate human LINE-1 retrotransposition Inter. J. Env. Res. pub. Heal, 2 (2005),pp. 14-23
    [28] Kano, H., Godoy, I., Courtney, C. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism Genes Dev., 23 (2009),pp. 1303-1312
    [29] Khan, H., Smit, A., Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates Genome Res., 16 (2006),pp. 78-87
    [30] Kidwell, M.G., Lisch, D.R. Transposable elements and host genome evolution Trends Ecol. Evol., 15 (2000),pp. 95-99
    [31] Kinoshita, S.M., Taguchi, S. NF-IL6 (C/EBPβ) induces HIV-1 replication by inhibiting cytidine deaminase APOBEC3G Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 15022-15027
    [32] Lander, E.S., Linton, L.M., Birren, B. et al. Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [33] Lin, Y.F., Waldman, A.S. Capture of DNA sequences at double-strand breaks in mammalian chromosomes Genetics, 158 (2001),pp. 1665-1674
    [34] Louis, K.S., Siegel, A.C. Cell viability analysis using trypan blue: manual and automated methods Methods Mol. Biol., 740 (2011),pp. 7-12
    [35] Martin, S.L., Cruceanu, M., Branciforte, D. et al. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein J. Mol. Biol., 348 (2005),pp. 549-561
    [36] Matsuki, H., Takahashi, M., Higuchi, M. et al. Both G3BP1 and G3BP2 contribute to stress granule formation Genes Cells, 18 (2013),pp. 135-146
    [37] McCubrey, J.A., LaHair, M.M., Franklin, R.A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways Antioxid. Redox Sign, 8 (2006),pp. 1775-1789
    [38] Morrish, T.A., Gilbert, N., Myers, J.S. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition Nat. Genet., 31 (2002),pp. 159-165
    [39] Okudaira, N., Iijima, K., Koyama, T. et al. Induction of long interspersed nucleotide element-1 (L1) retrotransposition by 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 18487-18492
    [40] Okudaira, N., Okamura, T., Tamura, M. et al. Long interspersed element-1 is differentially regulated by food-borne carcinogens via the aryl hydrocarbon receptor Oncogene, 32 (2013),pp. 4903-4912
    [41] Okudaira, N., Ishizaka, Y., Nishio, H. Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine J. Biol. Chem., 289 (2014),pp. 25476-25485
    [42] Ospina-Alvarez, N., Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change PLoS One, 3 (2008),p. e2837
    [43] Ostertag, E.M., Biology of mammalian L1 retrotransposons Annu. Rev. Genet., 35 (2001),pp. 501-538
    [44] Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res., 29 (2001),p. e45
    [45] Poulter, R., Butler, M., Ormandy, J. A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons Gene, 227 (1999),pp. 169-179
    [46] Rauen, U., Polzar, B., Stephan, H. et al. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species FASEB J., 13 (1999),pp. 155-168
    [47] Rees, D.J., Dufresne, F., Glemet, H. et al. Amphipod genome sizes: first estimates for Arctic species reveal genomic giants Genome, 50 (2007),pp. 151-158
    [48] Rees, D.J., Belzile, C., Glémet, H. et al. Large genomes among caridean shrimp Genome, 51 (2008),pp. 159-163
    [49] Rosser, J.M., An, W. L1 expression and regulation in humans and rodents Front. Biosci., 4 (2012),pp. 2203-2225
    [50] Servomaa, K., Rytömaa, T. UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn) Int. J. Radiat. Biol., 57 (1990),pp. 331-343
    [51] Shedlock, A.M. Phylogenomic investigation of CR1 LINE diversity in reptiles Syst. Biol., 55 (2006),pp. 902-911
    [52] Song, Y.S., Lee, B.Y., Hwang, E.S. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis Mech. Ageing Dev., 126 (2005),pp. 580-590
    [53] Stribinskis, V., Ramos, K.S. Activation of human long interspersed nuclear element 1 retrotransposition by benzo (a) pyrene, an ubiquitous environmental carcinogen Cancer Res., 66 (2006),pp. 2616-2620
    [54] Sugano, T., Kajikawa, M., Okada, N. Isolation and characterization of retrotransposition-competent LINEs from zebrafish Gene, 365 (2006),pp. 74-82
    [55] Suzuki, J., Yamaguchi, K., Kajikawa, M. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition PLoS Genet., 5 (2009),p. e1000461
    [56] Tamura, K., Stecher, G., Peterson, D. et al. MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol., 30 (2013),pp. 2725-2729
    [57] Tanaka, A., Nakatani, Y., Hamada, N. et al. Ionising irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon Mutagenesis, 27 (2012),pp. 599-607
    [58] Teng, S.C., Kim, B., Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks Nature, 383 (1996),pp. 641-644
    [59] Ubersax, J.A., Mechanisms of specificity in protein phosphorylation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 530-541
    [60] van Buer, J., Cvetkovic, J., Baier, M. BMC Plant Biol., 16 (2016),p. 163
    [61] Vieira, C., Aubry, P., Lepetit, D. et al. Proc. Biol. Sci., 265 (1998),pp. 1161-1165
    [62] Volff, J.-N., Brosius, J. Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes Gene Protein Evol., 3 (2007),pp. 175-190
    [63] Whelan, J.A., Russell, N.B., Whelan, M.A. A method for the absolute quantification of cDNA using real-time PCR J. Immuno. Methods, 278 (2003),pp. 261-269
    [64] Zedek, F., Smerda, J., Smarda, P. et al. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis BMC Plant Biol., 10 (2010),p. 265
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  48
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 录用日期:  2017-07-21
  • 修回日期:  2017-07-18
  • 网络出版日期:  2017-07-24
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回