留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon

Feiyue Cheng Luyao Gong Dahe Zhao Haibo Yang Jian Zhou Ming Li Hua Xiang

Feiyue Cheng, Luyao Gong, Dahe Zhao, Haibo Yang, Jian Zhou, Ming Li, Hua Xiang. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. Journal of Genetics and Genomics, 2017, 44(11): 541-548. doi: 10.1016/j.jgg.2017.09.010
Citation: Feiyue Cheng, Luyao Gong, Dahe Zhao, Haibo Yang, Jian Zhou, Ming Li, Hua Xiang. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. Journal of Genetics and Genomics, 2017, 44(11): 541-548. doi: 10.1016/j.jgg.2017.09.010

doi: 10.1016/j.jgg.2017.09.010

Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
    [2] Barrangou, R., Marraffini, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity Mol. Cell, 54 (2014),pp. 234-244
    [3] Breuert, S., Allers, T., Spohn, G. et al. Regulated polyploidy in halophilic archaea PLoS One, 1 (2006),p. e92
    [4] Brouns, S.J.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
    [5] Cai, S.F., Cai, L., Liu, H.L. et al. Appl. Environ. Microbiol., 78 (2012),pp. 1946-1952
    [6] Cai, S.F., Cai, L., Zhao, D.H. et al. Appl. Environ. Microbiol., 81 (2015),pp. 373-385
    [7] Carte, J., Pfister, N.T., Compton, M.M. et al. Binding and cleavage of CRISPR RNA by Cas6 RNA, 16 (2010),pp. 2181-2188
    [8] Cline, S.W., Lam, W.L., Charlebois, R.L. et al. Transformation methods for halophilic archaebacteria Can. J. Microbiol., 35 (1989),pp. 148-152
    [9] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [10] Deltcheva, E., Chylinski, K., Sharma, C.M. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III Nature, 471 (2011),pp. 602-607
    [11] DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
    [12] Fischer, S., Maier, L.K., Stoll, B. et al. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA J. Biol. Chem., 287 (2012),pp. 33351-33363
    [13] Garneau, J.E., Dupuis, M.È., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [14] Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [15] Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease Science, 329 (2010),pp. 1355-1358
    [16] Jiang, W.Y., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
    [17] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [18] Kim, D., Kim, J., Hur, J.K. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells Nat. Biotechnol., 34 (2016),pp. 863-868
    [19] Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells Nat. Biotechnol., 34 (2016),pp. 869-875
    [20] Li, M., Liu, H.L., Han, J. et al. J. Bacteriol., 195 (2013),pp. 867-875
    [21] Li, M., Gong, L.Y., Zhao, D.H. et al. The spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer Nucleic Acids Res., 45 (2017),pp. 4642-4654
    [22] Li, M., Wang, R., Xiang, H. Nucleic Acids Res., 42 (2014),pp. 7226-7235
    [23] Li, M., Wang, R., Zhao, D.H. et al. Nucleic Acids Res., 42 (2014),pp. 2483-2492
    [24] Li, Y.J., Pan, S.F., Zhang, Y. et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing Nucleic Acids Res., 44 (2016),p. e34
    [25] Liu, H.L., Han, J., Liu, X.Q. et al. J. Genet. Genomics, 38 (2011),pp. 261-269
    [26] Maier, L.K., Stachler, A.E., Saunders, S.J. et al. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein J. Biol. Chem., 290 (2015),pp. 4192-4201
    [27] Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S. et al. An updated evolutionary classification of CRISPR-Cas systems Nat. Rev. Microbiol., 13 (2015),pp. 722-736
    [28] Mali, P., Yang, L.H., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
    [29] Marraffini, L.A., Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA Science, 322 (2008),pp. 1843-1845
    [30] Marraffini, L.A., Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea Nat. Rev. Genet., 11 (2010),pp. 181-190
    [31] Plagens, A., Richter, H., Charpentier, E. et al. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes FEMS Microbiol. Rev., 39 (2015),pp. 442-463
    [32] Pyne, M.E., Bruder, M.R., Moo-Young, M. et al. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium Sci. Rep., 6 (2016),p. 25666
    [33] Sambrook, J., Fritsch, E.F., Maniatis, T.
    [34] Semenova, E., Jore, M.M., Datsenko, K.A. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 10098-10103
    [35] Shan, Q.W., Wang, Y.P., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [36] Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems Mol. Cell, 60 (2015),pp. 385-397
    [37] Shmakov, S., Smargon, A., Scott, D. et al. Diversity and evolution of class 2 CRISPR-Cas systems Nat. Rev. Microbiol., 15 (2017),pp. 169-182
    [38] Sorek, R., Kunin, V., Hugenholtz, P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea Nat. Rev. Microbiol., 6 (2008),pp. 181-186
    [39] Stachler, A.E., Turgeman-Grott, I., Shtifman-Segal, E. et al. High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon Nucleic Acids Res., 45 (2017),pp. 5208-5216
    [40] Sternberg, S.H., Richter, H., Charpentier, E. et al. Adaptation in CRISPR-Cas systems Mol. Cell, 61 (2016),pp. 797-808
    [41] van der Oost, J., Jore, M.M., Westra, E.R. et al. CRISPR-based adaptive and heritable immunity in prokaryotes Trends biochem. Sci., 34 (2009),pp. 401-407
    [42] Wang, H.Y., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [43] Wang, R., Li, M., Gong, L.Y. et al. Nucleic Acids Res., 44 (2016),pp. 4266-4277
    [44] Westra, E.R., Buckling, A., Fineran, P.C. CRISPR-Cas systems: beyond adaptive immunity Nat. Rev. Microbiol., 12 (2014),pp. 317-326
    [45] Westra, E.R., Semenova, E., Datsenko, K.A. et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition PLoS Genet., 9 (2013),p. e1003742
    [46] Wiedenheft, B., van Duijn, E., Bultema, J. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 10092-10097
    [47] Wu, Z.F., Liu, J.F., Yang, H.B. et al. Nucleic Acids Res., 42 (2014),pp. 2282-2294
    [48] Zerulla, K., Chimileski, S., Näther, D. et al. DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival PLoS One, 9 (2014),p. e94819
    [49] Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  33
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-23
  • 录用日期:  2017-09-25
  • 修回日期:  2017-09-18
  • 网络出版日期:  2017-11-02
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回