-
Abstract: Viruses can infect host plants to cause severe diseases and substantial agricultural loss, while plants have evolved RNA interference (RNAi) strategy to defend against viral infection. Despite enormous efforts, only a few host proteins in RNAi pathway were shown to mediate antiviral defense, including RNA-dependent RNA polymerase 1 (RDR1), RDR6, DICER-LIKE 2 (DCL2) and DCL4. In this study, we carried out a genetic screen for antiviral factors of RNAi pathway in Arabidopsis rdr6 background via inoculation with a 2b-deficient Cucumber Mosaic Virus (CMV-Δ2b). We identified a mutant susceptible to CMV-Δ2b, referred to as (enor) 3-1 rdr6, and found that ENOR3 encodes a functionally unknown protein with high homology to the mammalian Non Imprinted in Prader-Willi/Angelman (NIPA) magnesium transporters. ENOR3 inhibits accumulation of CMV-Δ2b and acts additively with RDR1, RDR6, DCL2 and DCL4 in antiviral defense. These results uncover that ENOR3 is a key component in antiviral RNAi pathway, and provide new insights into antiviral immunity.These authors contributed equally to this work.
-
[1] Akbergenov, R., Si-Ammour, A., Blevins, T. et al. Molecular characterization of geminivirus-derived small RNAs in different plant species Nucleic Acids Res., 34 (2006),pp. 462-471 [2] Baulcombe, D. RNA silencing in plants Nature, 431 (2004),pp. 356-363 [3] Bouche, N., Lauressergues, D., Gasciolli, V. et al. EMBO J., 25 (2006),pp. 3347-3356 [4] Chai, J.H., Locke, D.P., Greally, J.M. et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons Am. J. Hum. Genet., 73 (2003),pp. 898-925 [5] Csorba, T., Burgyán, J. [6] Dalmay, T., Hamilton, A., Rudd, S. et al. Cell, 101 (2000),pp. 543-553 [7] Deleris, A., Gallego-Bartolome, J., Bao, J.S. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense Science, 313 (2006),pp. 68-71 [8] Diaz-Pendon, J.A., Li, F., Li, W.X. et al. Plant Cell, 19 (2007),pp. 2053-2063 [9] Ding, S.W. RNA-based antiviral immunity Nat. Rev. Immunol., 10 (2010),pp. 632-644 [10] Ding, S.W., Lu, R. Virus-derived siRNAs and piRNAs in immunity and pathogenesis Curr. Opin. Virol., 1 (2011),pp. 533-544 [11] Duan, C.G., Fang, Y.Y., Zhou, B.J. et al. Plant Cell, 24 (2012),pp. 259-274 [12] Fusaro, A.F., Matthew, L., Smith, N.A. et al. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway EMBO Rep., 7 (2006),pp. 1168-1175 [13] Garcia-Ruiz, H., Takeda, A., Chapman, E.J. et al. Plant Cell, 22 (2010),pp. 481-496 [14] Gonzalez, I., Rakitina, D., Semashko, M. et al. RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization RNA, 18 (2012),pp. 771-782 [15] Goytain, A., Hines, R.M., El-Husseini, A. et al. J. Biol. Chem., 282 (2007),pp. 8060-8068 [16] Goytain, A., Hines, R.M., Quamme, G.A. Am. J. Physiol. Cell Physiol., 295 (2008),pp. C944-C953 [17] Guo, Z.X., Lu, J.F., Wang, X.B. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 1377-1382 [18] Harvey, J.J.W., Lewsey, M.G., Patel, K. et al. An antiviral defense role of AGO2 in Plants PLoS One, 6 (2011),p. e14639 [19] Li, F., Ding, S.W. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity Annu. Rev. Microbiol., 60 (2006),pp. 503-531 [20] Li, S., Liu, L., Zhuang, X. et al. Cell, 153 (2013),pp. 562-574 [21] Mourrain, P., Beclin, C., Elmayan, T. et al. Cell, 101 (2000),pp. 533-542 [22] Neff, M.M., Turk, E., Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis Trends Genet., 18 (2002),pp. 613-615 [23] Nelson, B.K., Cai, X., Nebenfuhr, A. Plant J., 51 (2007),pp. 1126-1136 [24] Palukaitis, P., Garcia-Arenal, F. Cucumoviruses Adv. Virus Res., 62 (2003),pp. 241-323 [25] Qi, T., Song, S., Ren, Q. et al. Plant Cell, 23 (2011),pp. 1795-1814 [26] Qu, F., Ye, X.H., Morris, T.J. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 14732-14737 [27] Rainier, S., Chai, J.H., Tokarz, D. et al. Am. J. Hum. Genet., 73 (2003),pp. 967-971 [28] Schneeberger, K., Ossowski, S., Lanz, C. et al. SHOREmap: simultaneous mapping and mutation identification by deep sequencing Nat. Med., 6 (2009),pp. 550-551 [29] Song, S., Qi, T., Fan, M. et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development PLoS Genet., 9 (2013),p. e1003653 [30] Sun, H., Schneeberger, K. SHOREmap v3.0: fast and accurate identification of causal mutations from forward genetic screens Meth. Mol. Biol., 1284 (2015),pp. 381-395 [31] Tamura, K., Stecher, G., Peterson, D. et al. MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol., 30 (2013),pp. 2725-2729 [32] Wang, X.B., Jovel, J., Udomporn, P. et al. Plant Cell, 23 (2011),pp. 1625-1638 [33] Wang, X.B., Wu, Q.F., Ito, T. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 484-489 [34] Xie, H., Zhang, Y.H., Zhang, P.P. et al. PLoS One, 9 (2014),p. e109749 [35] Yan, L.H., Wei, S.W., Wu, Y.R. et al. Mol. Plant, 8 (2015),pp. 1820-1823 [36] Zhang, X.R., Yuan, Y.R., Pei, Y. et al. Genes Dev., 20 (2006),pp. 3255-3268 [37] Zhu, B.Y., Gao, H., Xu, G. et al. Front. Plant Sci., 8 (2017),p. 422 期刊类型引用(17)
1. Wang, X., Bai, Y., Shen, Z. et al. Genome-wide analysis of tobacco NtTOM1/TOM3 gene family and identification of NtTOM1a/ NtTOM3a response to tobacco mosaic virus. BMC Plant Biology, 2024, 24(1): 942. 必应学术
2. Liu, S., Han, Y., Li, W.-X. et al. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiology and Molecular Biology Reviews, 2023, 87(2) 必应学术
3. Zhao, L., Chen, Y., Xiao, X. et al. AGO2a but not AGO2b mediates antiviral defense against infection of wild-type cucumber mosaic virus in tomato. Horticulture Research, 2023, 10(5): uhad043. 必应学术
4. Melo, J.R., Mammarella, F., Ariel, F. Exogenous RNAs: promising tools for the second green revolution. Journal of Experimental Botany, 2023, 74(7): 2323-2337. 必应学术
5. Chaudhary, S.. Exploring small RNA in food crops: techniques and approaches. Plant Small RNA in Food Crops, 2023. 必应学术
6. Heidari, P., Puresmaeli, F., Mora-Poblete, F. Genome-Wide Identification and Molecular Evolution of the Magnesium Transporter (MGT) Gene Family in Citrullus lanatus and Cucumis sativus. Agronomy, 2022, 12(10): 2253. 必应学术
7. Li, F., Ge, L., Lozano-Durán, R. et al. Antiviral RNAi drives host adaptation to viral infection. Trends in Microbiology, 2022, 30(10): 915-917. 必应学术
8. Xu, Q., Shen, L., Jin, L. et al. Comparative Transcriptome Analysis of CMV or 2b-Deficient CMV-Infected dcl2dcl4 Reveals the Effects of Viral Infection on Symptom Induction in Arabidopsis thaliana. Viruses, 2022, 14(7): 1582. 必应学术
9. Jin, L., Chen, M., Xiang, M. et al. RNAi-Based Antiviral Innate Immunity in Plants. Viruses, 2022, 14(2): 432. 必应学术
10. Kobayashi, N.I.. An introduction to the Mg2+ transporters in plants. Cation Transporters in Plants, 2021. 必应学术
11. Chaturvedi, S., Rao, A.L.N. Studying RNA–Protein interaction using riboproteomics. Methods in Molecular Biology, 2021, 2170: 213-218. 必应学术
12. Ogura, T., Kobayashi, N.I., Hermans, C. et al. Short-Term Magnesium Deficiency Triggers Nutrient Retranslocation in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11: 563. 必应学术
13. Regon, P., Chowra, U., Awasthi, J.P. et al. Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Computational Biology and Chemistry, 2019, 80: 498-511. 必应学术
14. Sun, X.-Y., Chen, Y. Effect of Twist on angiogenesis of nasopharyngeal cancer cells by regulating ERK signaling pathway | [Twist 通过 ERK 通路对体外鼻咽癌细胞血管 生成的影响]. Chinese Journal of Pathophysiology, 2019, 35(2): 298-304. 百度学术
15. Muhammad, T., Zhang, F., Zhang, Y. et al. RNA interference: A natural immune system of plants to counteract biotic stressors. Cells, 2019, 8(1): 38. 必应学术
16. Guo, Z., Wang, X.-B., Li, W.-X. et al. A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway. Methods in Molecular Biology, 2019, 2028: 215-229. 必应学术
17. Yang, Z., Li, Y. Dissection of RNAi-based antiviral immunity in plants. Current Opinion in Virology, 2018, 32: 88-99. 必应学术
其他类型引用(3)
-

计量
- 文章访问数: 106
- HTML全文浏览量: 32
- PDF下载量: 3
- 被引次数: 20