留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism

Chun Song Han Yan Hanming Wang Yan Zhang Huiqing Cao Yiqi Wan Lingbao Kong Shenghan Chen Hong Xu Bingxing Pan Jin Zhang Guohuang Fan Hongbo Xin Zicai Liang Weiping Jia Xiao-Li Tian

Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007
Citation: Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007

doi: 10.1016/j.jgg.2017.11.007

AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M. et al. A global reference for human genetic variation Nature, 526 (2015),pp. 68-74
    [2] Claussnitzer, M., Dankel, S.N., Kim, K.H. et al. FTO obesity variant circuitry and adipocyte browning in humans N. Engl. J. Med., 373 (2015),pp. 895-907
    [3] Danecek, P., Auton, A., Abecasis, G. et al. The variant call format and VCFtools Bioinformatics, 27 (2011),pp. 2156-2158
    [4] DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan, A., Go, M.J., Zhang, W. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility Nat. Genet., 46 (2014),pp. 234-244
    [5] Evangelou, E., Ioannidis, J.P. Meta-analysis methods for genome-wide association studies and beyond Nat. Rev. Genet., 14 (2013),pp. 379-389
    [6] Fuchsberger, C., Flannick, J., Teslovich, T.M. et al. The genetic architecture of type 2 diabetes Nature, 536 (2016),pp. 41-47
    [7] GTEx Consortium The genotype-tissue expression (GTEx) project Nat. Genet., 45 (2013),pp. 580-585
    [8] Herrera, B.M., Lockstone, H.E., Taylor, J.M. et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes BMC Med. Genomics, 2 (2009),p. 54
    [9] Hirose, T., Ideue, T., Nagai, M. et al. A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing Mol. Cell, 23 (2006),pp. 673-684
    [10] Hsu, P.P., Kang, S.A., Rameseder, J. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling Science, 332 (2011),pp. 1317-1322
    [11] Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [12] Ishii, M., Maeda, A., Tani, S. et al. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules Arch. Biochem. Biophys., 566 (2015),pp. 26-35
    [13] Jiang, F., Yan, H., Wu, C. et al. A novel block at chromosome 12q24.1 is associated with coronary artery disease in Han Chinese populations Pharmacogenet. Genom., 26 (2016),pp. 497-504
    [14] Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
    [15] Koegl, M., Hoppe, T., Schlenker, S. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly Cell, 96 (1999),pp. 635-644
    [16] Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [17] Li, H., Handsaker, B., Wysoker, A. et al. The sequence alignment/map format and SAMtools Bioinformatics, 25 (2009),pp. 2078-2079
    [18] Ma, R.C., Hu, C., Tam, C.H. et al. Diabetologia, 56 (2013),pp. 1291-1305
    [19] Modaressi, S., Christ, B., Bratke, J. et al. Molecular cloning, sequencing and expression of the cDNA of the mitochondrial form of phosphoenolpyruvate carboxykinase from human liver Biochem. J., 315 (1996),pp. 807-814
    [20] Morris, A.P. Transethnic meta-analysis of genomewide association studies Genet. Epidemiol., 35 (2011),pp. 809-822
    [21] Neel, J.V. The “thrifty genotype” in 1998 Nutr. Rev., 57 (1999),pp. S2-S9
    [22] Purcell, S., Neale, B., Todd-Brown, K. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses Am. J. Hum. Genet., 81 (2007),pp. 559-575
    [23] Rich, S.S. Diabetes: still a geneticist's nightmare Nature, 536 (2016),pp. 37-38
    [24] Scott, R.A., Scott, L.J., Magi, R. et al. An expanded genome-wide association study of type 2 diabetes in Europeans Diabetes, 66 (2017),pp. 2888-2902
    [25] Srivastava, A.K., Pandey, S.K. Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin Mol. Cell. Biochem., 182 (1998),pp. 135-141
    [26] Trapnell, C., Hendrickson, D.G., Sauvageau, M. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq Nat. Biotechnol., 31 (2013),pp. 46-53
    [27] Weir, B.S., Cockerham, C.C. Estimating F-statistics for the analysis of population structure Evolution, 38 (1984),pp. 1358-1370
    [28] Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
    [29] Welsh, G.I., Wilson, C., Proud, C.G. GSK3: a SHAGGY frog story Trends Cell Biol., 6 (1996),pp. 274-279
    [30] Westra, H.J., Peters, M.J., Esko, T. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations Nat. Genet., 45 (2013),pp. 1238-1243
    [31] Xia, Q., Chesi, A., Manduchi, E. et al. The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5 Diabetologia, 59 (2016),pp. 2360-2368
    [32] Xu, K., Ma, L., Li, Y. et al. Hypertension, 66 (2015),pp. 641-646
    [33] Yi, J.S., Park, J.S., Ham, Y.M. et al. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling Nat. Commun., 4 (2013),p. 2354
    [34] Zhang, X., Zhang, R., Raab, S. et al. Rhesus macaques develop metabolic syndrome with reversible vascular dysfunction responsive to pioglitazone Circulation, 124 (2011),pp. 77-86
    [35] Zhang, Y., Zheng, W., Liu, Y. et al. Eplerenone restores 24-h blood pressure circadian rhythm and reduces advanced glycation end-products in rhesus macaques with spontaneous hypertensive metabolic syndrome Sci. Rep., 6 (2016),p. 23957
    [36] Zou, C., Wang, Y., Shen, Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement J. Biochem. Biophys. Methods, 64 (2005),pp. 207-215
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-17
  • 录用日期:  2017-11-25
  • 修回日期:  2017-11-23
  • 网络出版日期:  2018-02-14
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回