留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation

Zhuqin Zhang Jing Xu Yue Liu Tingting Wang Jianfei Pei Liqin Cheng Delong Hao Xiang Zhao Hou-Zao Chen De-Pei Liu

Zhuqin Zhang, Jing Xu, Yue Liu, Tingting Wang, Jianfei Pei, Liqin Cheng, Delong Hao, Xiang Zhao, Hou-Zao Chen, De-Pei Liu. Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation[J]. Journal of Genetics and Genomics, 2018, 45(1): 25-32. doi: 10.1016/j.jgg.2018.01.002
Citation: Zhuqin Zhang, Jing Xu, Yue Liu, Tingting Wang, Jianfei Pei, Liqin Cheng, Delong Hao, Xiang Zhao, Hou-Zao Chen, De-Pei Liu. Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation[J]. Journal of Genetics and Genomics, 2018, 45(1): 25-32. doi: 10.1016/j.jgg.2018.01.002

doi: 10.1016/j.jgg.2018.01.002

Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Arango Duque, G., Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases Front. Immunol., 5 (2014),p. 491
    [2] Boytard, L., Spear, R., Chinetti-Gbaguidi, G. et al. Arterioscler. Thromb. Vasc. Biol., 33 (2013),pp. 431-438
    [3] Chen, H.Z., Wang, F., Gao, P. et al. Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm Circ. Res., 119 (2016),pp. 1076-1088
    [4] Cho, D.I., Kim, M.R., Jeong, H.Y. et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages Exp. Mol. Med., 46 (2014),p. e70
    [5] Dale, M.A., Ruhlman, M.K., Baxter, B.T. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy Arterioscler. Thromb. Vasc. Biol., 35 (2015),pp. 1746-1755
    [6] Dale, M.A., Xiong, W., Carson, J.S. et al. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization J. Immunol., 196 (2016),pp. 4536-4543
    [7] Daugherty, A., Manning, M.W., Cassis, L.A. Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis Br. J. Pharmacol., 134 (2001),pp. 865-870
    [8] DiDonato, J.A., Mercurio, F., Karin, M. NF-kappaB and the link between inflammation and cancer Immunol. Rev., 246 (2012),pp. 379-400
    [9] Forsdahl, S.H., Singh, K., Solberg, S. et al. Risk factors for abdominal aortic aneurysms: a 7-year prospective study: The Tromso Study, 1994-2001 Circulation, 119 (2009),pp. 2202-2208
    [10] Hah, Y.S., Cheon, Y.H., Lim, H.S. et al. Myeloid deletion of SIRT1 aggravates serum transfer arthritis in mice via nuclear factor-kappaB activation PLoS One, 9 (2014)
    [11] Hans, C.P., Koenig, S.N., Huang, N. et al. Inhibition of Notch1 signaling reduces abdominal aortic aneurysm in mice by attenuating macrophage-mediated inflammation Arterioscler. Thromb. Vasc. Biol., 32 (2012),pp. 3012-3023
    [12] Hellmann, D.B., Grand, D.J., Freischlag, J.A. Inflammatory abdominal aortic aneurysm J. Am. Med. Assoc., 297 (2007),pp. 395-400
    [13] Jia, Y.Y., Lu, J., Huang, Y. et al. The involvement of NFAT transcriptional activity suppression in SIRT1-mediated inhibition of COX-2 expression induced by PMA/ionomycin PLoS One, 9 (2014)
    [14] Kent, K.C. Clinical practice. Abdominal aortic aneurysms N. Engl. J. Med., 371 (2014),pp. 2101-2108
    [15] Lawrence, T., Bebien, M., Liu, G.Y. et al. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation Nature, 434 (2005),pp. 1138-1143
    [16] Li, L., Zhang, H.N., Chen, H.Z. et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice Circ. Res., 108 (2011),pp. 1180-1189
    [17] Liu, Y., Wang, T.T., Zhang, R. et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice J. Exp. Med., 213 (2016),pp. 2473-2488
    [18] Liu, Y.C., Zou, X.B., Chai, Y.F. et al. Macrophage polarization in inflammatory diseases Int. J. Biol. Sci., 10 (2014),pp. 520-529
    [19] Lu, X., Malumbres, R., Shields, B. et al. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling Blood, 112 (2008),pp. 4098-4108
    [20] Mantovani, A., Sica, A., Locati, M. Macrophage polarization comes of age Immunity, 23 (2005),pp. 344-346
    [21] Mantovani, A., Sica, A., Sozzani, S. et al. The chemokine system in diverse forms of macrophage activation and polarization Trends Immunol., 25 (2004),pp. 677-686
    [22] Motwani, M.P., Gilroy, D.W. Macrophage development and polarization in chronic inflammation Semin. Immunol., 27 (2015),pp. 257-266
    [23] Murray, P.J., Wynn, T.A. Protective and pathogenic functions of macrophage subsets Nat. Rev. Immunol., 11 (2011),pp. 723-737
    [24] Nordon, I.M., Hinchliffe, R.J., Loftus, I.M. et al. Pathophysiology and epidemiology of abdominal aortic aneurysms Nat. Rev. Cardiol., 8 (2011),pp. 92-102
    [25] Ota, H., Akishita, M., Eto, M. et al. Sirt1 modulates premature senescence-like phenotype in human endothelial cells J. Mol. Cell. Cardiol., 43 (2007),pp. 571-579
    [26] Palmer-Crocker, R.L., Hughes, C.C., Pober, J.S. IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma c chain J. Clin. Invest., 98 (1996),pp. 604-609
    [27] Satoh, K., Nigro, P., Matoba, T. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms Nat. Med., 15 (2009),pp. 649-656
    [28] Shah, P.K. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm Circulation, 96 (1997),pp. 2115-2117
    [29] Sica, A., Mantovani, A. J. Clin. Invest., 122 (2012),pp. 787-795
    [30] Singh, K., Bonaa, K.H., Jacobsen, B.K. et al. Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: The Tromso Study Am. J. Epidemiol, 154 (2001),pp. 236-244
    [31] Sun, C., Zhang, F., Ge, X. et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B Cell Metabol., 6 (2007),pp. 307-319
    [32] Wang, N., Liang, H., Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance Front. Immunol., 5 (2014),p. 614
    [33] Yan, Y.F., Pei, J.F., Zhang, Y. et al. The paraoxonase gene cluster protects against abdominal aortic aneurysm formation Arterioscler. Thromb. Vasc. Biol., 37 (2017),pp. 291-300
    [34] Yang, H., Zhang, W., Pan, H. et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-kappaB activity PLoS One, 7 (2012)
    [35] Yang, Z., Wang, X., He, Y. et al. The full capacity of AICAR to reduce obesity-induced inflammation and insulin resistance requires myeloid SIRT1 PLoS One, 7 (2012)
    [36] Yeung, F., Hoberg, J.E., Ramsey, C.S. et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase EMBO J., 23 (2004),pp. 2369-2380
    [37] Zhang, Q.J., Wang, Z., Chen, H.Z. et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice Cardiovasc. Res., 80 (2008),pp. 191-199
    [38] Zhang, R., Chen, H.Z., Liu, J.J. et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages J. Biol. Chem., 285 (2010),pp. 7097-7110
  • 加载中
计量
  • 文章访问数:  100
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-03
  • 录用日期:  2018-01-11
  • 修回日期:  2018-01-06
  • 网络出版日期:  2018-01-17
  • 刊出日期:  2018-01-20

目录

    /

    返回文章
    返回