留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells

Fayu Yang Xianglian Ge Xiubin He Xiexie Liu Chenchen Zhou Huihui Sun Junsong Zhang Junzhao Zhao Zongming Song Jia Qu Changbao Liu Feng Gu

Fayu Yang, Xianglian Ge, Xiubin He, Xiexie Liu, Chenchen Zhou, Huihui Sun, Junsong Zhang, Junzhao Zhao, Zongming Song, Jia Qu, Changbao Liu, Feng Gu. Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells[J]. Journal of Genetics and Genomics, 2018, 45(6): 329-332. doi: 10.1016/j.jgg.2018.02.009
Citation: Fayu Yang, Xianglian Ge, Xiubin He, Xiexie Liu, Chenchen Zhou, Huihui Sun, Junsong Zhang, Junzhao Zhao, Zongming Song, Jia Qu, Changbao Liu, Feng Gu. Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells[J]. Journal of Genetics and Genomics, 2018, 45(6): 329-332. doi: 10.1016/j.jgg.2018.02.009

doi: 10.1016/j.jgg.2018.02.009

Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells

More Information
  • [1] Agudelo, D., Duringer, A., Bozoyan, L. et al. Marker-free coselection for CRISPR-driven genome editing in human cells Nat. Methods, 14 (2017),pp. 615-620
    [2] Bae, S., Kweon, J., Kim, H.S. et al. Microhomology-based choice of Cas9 nuclease target sites Nat. Methods, 11 (2014),pp. 705-706
    [3] Chenouard, V., Brusselle, L., Heslan, J.M. et al. A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis J. Genet. Genomics, 43 (2016),pp. 341-348
    [4] Chuai, G., Yang, F., Yan, J. et al. Deciphering relationship between microhomology and in-frame mutation occurrence in human CRISPR-based gene knockout Mol. Ther. Nucleic Acids, 5 (2016),p. e323
    [5] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [6] Gravells, P., Ahrabi, S., Vangala, R.K. et al. Hum. Mol. Genet., 24 (2015),pp. 7097-7110
    [7] Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [8] Kim, D., Kim, S., Kim, S. et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq Genome Res., 26 (2016),pp. 406-415
    [9] Liao, S.R., Tammaro, M., Yan, H. Nucleic Acids Res., 43 (2015),p. e134
    [10] Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
    [11] Maresch, R., Mueller, S., Veltkamp, C. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice Nat. Commun., 7 (2016),p. 10770
    [12] Mashal, R.D., Koontz, J., Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases Nat. Genet., 9 (1995),pp. 177-183
    [13] Peter Qiu, Shandilya, Harini, D'Alessio, James M., O' Connor, Kevin, Durocher, Jeffrey, Gerard, G.F. Mutation detection using Surveyor™ nuclease Biotechniques, 36 (2004),pp. 702-707
    [14] Ramlee, M.K., Yan, T., Cheung, A.M. et al. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis Sci. Rep., 5 (2015),p. 15587
    [15] Seitz, V., Schaper, S., Droge, A. et al. A new method to prevent carry-over contaminations in two-step PCR NGS library preparations Nucleic Acids Res., 43 (2015)
    [16] Shalem, O., Sanjana, N.E., Zhang, F. High-throughput functional genomics using CRISPR-Cas9 Nat. Rev. Genet., 16 (2015),pp. 299-311
    [17] van Overbeek, M., Capurso, D., Carter, M.M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks Mol. Cell, 63 (2016),pp. 633-646
    [18] Wu, X., Kriz, A.J., Sharp, P.A. Target specificity of the CRISPR-Cas9 system Quant. Biol., 2 (2014),pp. 59-70
    [19] Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
    [20] Zhang, Y., Ge, X., Yang, F. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells Sci. Rep., 4 (2014),p. 5405
    [21] Zhang, Y., Long, C., Li, H. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice Sci. Adv., 3 (2017)
    [22] Zhou, Y., Zhu, S., Cai, C. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells Nature, 509 (2014),pp. 487-491
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-07
  • 录用日期:  2018-02-08
  • 修回日期:  2018-01-07
  • 网络出版日期:  2018-05-08
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回