留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB

Jian Wu Qiao Wang Wei Dai Wei Wang Ming Yue Jinke Wang

Jian Wu, Qiao Wang, Wei Dai, Wei Wang, Ming Yue, Jinke Wang. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB[J]. Journal of Genetics and Genomics, 2018, 45(4): 193-203. doi: 10.1016/j.jgg.2018.04.002
Citation: Jian Wu, Qiao Wang, Wei Dai, Wei Wang, Ming Yue, Jinke Wang. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB[J]. Journal of Genetics and Genomics, 2018, 45(4): 193-203. doi: 10.1016/j.jgg.2018.04.002

doi: 10.1016/j.jgg.2018.04.002

Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Abràmoff, M.D., Magalhães, P.J., Ram, S.J. Image processing with ImageJ Biophot. Int., 11 (2004),pp. 36-42
    [2] Albert, I., Wachi, S., Jiang, C. et al. GeneTrack‒a genomic data processing and visualization framework Bioinformatics, 24 (2008),pp. 1305-1306
    [3] Antonaki, A., Demetriades, C., Polyzos, A. et al. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements J. Biol. Chem., 286 (2011),pp. 38768-38782
    [4] Bailey, T.L., Johnson, J., Grant, C.E. et al. The MEME suite Nucleic Acids Res., 43 (2015),pp. W39-W49
    [5] Barish, G.D., Yu, R.T., Karunasiri, M. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response Genes Dev., 24 (2010),pp. 2760-2765
    [6] Brown, J.D., Lin, C.Y., Duan, Q. et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis Mol. Cell., 56 (2014),pp. 219-231
    [7] Choy, M.K., Movassagh, M., Siggens, L. et al. High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-κB-complex-dependent gene expression in human heart failure Genome Med., 2 (2010),p. 37
    [8] Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [9] Dai, W., Wu, J., Zhang, S. et al. Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2 Int. J. Biochem. Cell Biol., 89 (2017),pp. 157-170
    [10] De Siervi, A., De Luca, P., Moiola, C. et al. Identification of new Rel/NFκB regulatory networks by focused genome location analysis Cell Cycle, 8 (2009),pp. 2093-2100
    [11] Fisher, W.W., Li, J.J., Hammonds, A.S. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 21330-21335
    [12] Freaney, J.E., Kim, R., Mandhana, R. et al. Extensive cooperation of immune master regulators IRF3 and NFkappaB in RNA Pol II recruitment and pause release in human innate antiviral transcription Cell Rep., 4 (2013),pp. 959-973
    [13] Ghosh, A., Saginc, G., Leow, S.C. et al. Telomerase directly regulates NF-κB-dependent transcription Nat. Cell Biol., 14 (2012),pp. 1270-1281
    [14] Grant, C.E., Bailey, T.L., Noble, W.S. FIMO: scanning for occurrences of a given motif Bioinformatics, 27 (2011),pp. 1017-1018
    [15] Handschick, K., Beuerlein, K., Jurida, L. et al. Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression Mol. Cell., 53 (2014),pp. 193-208
    [16] Hayden, M.S., Ghosh, S. Shared principles in NF-κB signaling Cell, 132 (2008),pp. 344-362
    [17] Hayden, M.S., Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions Gene Dev., 26 (2012),pp. 203-234
    [18] Hoffmann, A., Natoli, G., Ghosh, G. Transcriptional regulation via the NF-κB signaling module Oncogene, 25 (2006),pp. 6706-6716
    [19] Jackman, R.W., Wu, C.L., Kandarian, S.C. PLoS One, 7 (2012)
    [20] Ji, H., Vokes, S.A., Wong, W.H. A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors Nucleic Acids Res., 34 (2006)
    [21] Jin, F., Li, Y., Dixon, J.R. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells Nature, 503 (2013),pp. 290-294
    [22] Jurida, L., Soelch, J., Bartkuhn, M. et al. The activation of IL-1-induced enhancers depends on TAK1 kinase activity and NF-κB p65 Cell Rep., 10 (2015),pp. 726-739
    [23] Kasowski, M., Grubert, F., Heffelfinger, C. et al. Variation in transcription factor binding among humans Science, 328 (2010),pp. 232-235
    [24] Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [25] Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
    [26] Lee, C., Wevrick, R., Fisher, R. et al. Human centromeric DNAs Hum. Genet., 100 (1997),pp. 291-304
    [27] Lim, C.A., Yao, F., Wong, J.J. et al. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation Mol. Cell., 27 (2007),pp. 622-635
    [28] Linnell, J., Mott, R., Field, S. et al. Quantitative high-throughput analysis of transcription factor binding specificities Nucleic Acids Res., 32 (2004),p. e44
    [29] Luca, F., Maranville, J.C., Richards, A.L. et al. Genetic, functional and molecular features of glucocorticoid receptor binding PLoS One, 8 (2013)
    [30] Martone, R., Euskirchen, G., Bertone, P. et al. Distribution of NF-kappaB-binding sites across human chromosome 22 Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12247-12252
    [31] Matys, V., Fricke, E., Geffers, R. et al. TRANSFAC: transcriptional regulation, from patterns to profiles Nucleic Acids Res., 31 (2003),pp. 374-378
    [32] McLean, C.Y., Bristor, D., Hiller, M. et al. GREAT improves functional interpretation of cis-regulatory regions Nat. Biotechnol., 28 (2010),pp. 495-501
    [33] Natoli, G. Control of NF-κB-dependent transcriptional responses by chromatin organization Cold Spring Harb. Perspect. Biol., 1 (2009)
    [34] Nijnik, A., Mott, R., Kwiatkowski, D.P. et al. Comparing the fine specificity of DNA binding by NF-κB p50 and p52 using principal coordinates analysis Nucleic Acids Res., 31 (2003),pp. 1497-1501
    [35] Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors Oncogene, 18 (1999),pp. 6853-6866
    [36] Quinlan, A.R., Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics, 26 (2010),pp. 841-842
    [37] Rao, N.A., McCalman, M.T., Moulos, P. et al. Coactivation of GR and NF-κB alters the repertoire of their binding sites and target genes Genome Res., 21 (2011),pp. 1404-1416
    [38] Raskatov, J.A., Meier, J.L., Puckett, J.W. et al. Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 1023-1028
    [39] Rhee, H.S., Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution Cell, 147 (2011),pp. 1408-1419
    [40] Saliba, D.G., Heger, A., Eames, H.L. et al. IRF5: RelA interaction targets inflammatory genes in macrophages Cell Rep., 8 (2014),pp. 1308-1317
    [41] Schmidt, S.F., Larsen, B.D., Loft, A. et al. Acute TNF-induced repression of cell identity genes is mediated by NF-κB-directed redistribution of cofactors from super-enhancers Genome Res., 25 (2015),pp. 1281-1294
    [42] Schreiber, J., Jenner, R.G., Murray, H.L. et al. Coordinated binding of NF-κB family members in the response of human cells to lipopolysaccharide Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 5899-5904
    [43] Sen, R., Baltimore, D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism Cell, 47 (1986),pp. 921-928
    [44] Sen, R., Smale, S.T. Selectivity of the NF-κB response Cold Spring Harb. Perspect. Biol., 2 (2010)
    [45] Siggers, T., Chang, A.B., Teixeira, A. et al. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding Nat. Immunol., 13 (2012),pp. 95-102
    [46] Smit, A.F., Hubley, R., Green, P.
    [47] Udalova, I.A., Mott, R., Field, D. et al. Quantitative prediction of NF-κB DNA-protein interactions Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 8167-8172
    [48] Wang, J.K., Li, T.X., Bai, Y.F. et al. Evaluating the binding affinities of NF-κB p50 homodimer to the wild-type and single-nucleotide mutant Ig-κB sites by the unimolecular dsDNA microarray Anal. Biochem., 316 (2003),pp. 192-201
    [49] Wong, D., Teixeira, A., Oikonomopoulos, S. et al. Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits Genome Biol., 12 (2011),p. R70
    [50] Xing, Y., Yang, Y., Zhou, F. et al. Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells Gene, 526 (2013),pp. 142-149
    [51] Zhang, Y., Liu, T., Meyer, C.A. et al. Model-based analysis of chip-seq (MACS) Genome Biol., 9 (2008),p. R137
    [52] Zhao, B., Barrera, L.A., Ersing, I. et al. The NF-κB genomic landscape in lymphoblastoid B cells Cell Rep., 8 (2014),pp. 1595-1606
    [53] Zhou, F., Ling, X., Yin, J. et al. Analyzing transcription factor activity using near infrared fluorescent bridge polymerase chain reaction Anal. Biochem., 448 (2014),pp. 105-112
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-11
  • 录用日期:  2018-04-09
  • 修回日期:  2018-04-05
  • 网络出版日期:  2018-04-13
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回