留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1

Lu Shi Xiang Li Zhiqiang Wu Xiaolei Li Jing Nie Mingzhou Guo Qian Mei Weidong Han

Lu Shi, Xiang Li, Zhiqiang Wu, Xiaolei Li, Jing Nie, Mingzhou Guo, Qian Mei, Weidong Han. DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1[J]. Journal of Genetics and Genomics, 2018, 45(4): 205-214. doi: 10.1016/j.jgg.2018.04.003
Citation: Lu Shi, Xiang Li, Zhiqiang Wu, Xiaolei Li, Jing Nie, Mingzhou Guo, Qian Mei, Weidong Han. DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1[J]. Journal of Genetics and Genomics, 2018, 45(4): 205-214. doi: 10.1016/j.jgg.2018.04.003

doi: 10.1016/j.jgg.2018.04.003

DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this study.
  • [1] Abi Habib, W., Brioude, F., Edouard, T. et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction Genet. Med., 20 (2018),pp. 250-258
    [2] Borralho, P.M., Kren, B.T., Castro, R.E. et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells FEBS J., 276 (2009),pp. 6689-6700
    [3] Bovell, L.C., Shanmugam, C., Putcha, B.D. et al. The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer Clin. Cancer Res., 19 (2013),pp. 3955-3965
    [4] Colangelo, T., Fucci, A., Votino, C. et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer Neoplasia, 15 (2013),pp. 1086-1099
    [5] Copija, A., Waniczek, D., Witkos, A. et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients Int. J. Mol. Sci., 18 (2017),p. 107
    [6] Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
    [7] Cummins, J.M., He, Y., Leary, R.J. et al. The colorectal microRNAome Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 3687-3692
    [8] Declercq, J., Van Dyck, F., Braem, C.V. et al. Cancer Res., 65 (2005),pp. 4544-4553
    [9] di Pietro, M., Sabates Bellver, J., Menigatti, M. et al. Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers Gastroenterology, 129 (2005),pp. 1047-1059
    [10] Dorard, C., de Thonel, A., Collura, A. et al. Nat. Med., 17 (2011),pp. 1283-1289
    [11] Duval, A., Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability Cancer Res., 62 (2002),pp. 2447-2454
    [12] El-Murr, N., Abidi, Z., Wanherdrick, K. et al. miRNA genes constitute new targets for microsatellite instability in colorectal cancer PLoS One, 7 (2012)
    [13] Ferlay, J., Soerjomataram, I., Dikshit, R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (2015),pp. E359-E386
    [14] Guinney, J., Dienstmann, R., Wang, X. et al. The consensus molecular subtypes of colorectal cancer Nat. Med., 21 (2015),pp. 1350-1356
    [15] Holleman, A., Chung, I., Olsen, R.R. et al. Oncogene, 30 (2011),pp. 4386-4398
    [16] Hu, G., Chen, D., Li, X. et al. Cancer Biol. Ther., 10 (2010),pp. 190-197
    [17] Juma, A.R., Damdimopoulou, P.E., Grommen, S.V. et al. Emerging role of PLAG1 as a regulator of growth and reproduction J. Endocrinol., 228 (2016),pp. R45-R56
    [18] Lee, Y.S., Dutta, A. MicroRNAs in cancer Annu. Rev. Pathol., 4 (2009),pp. 199-227
    [19] Li, X., Li, X., Liao, D. et al. Curr. Protein Pept. Sci., 16 (2015),pp. 301-309
    [20] Luo, C., Qiu, J. miR-181a inhibits cervical cancer development via downregulating GRP78 Oncol. Res., 25 (2017),pp. 1341-1348
    [21] Masuda, T., Hayashi, N., Kuroda, Y. et al. MicroRNAs as biomarkers in colorectal cancer Cancers (Basel), 9 (2017),p. 124
    [22] Mei, Q., Li, X., Meng, Y. et al. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach PLoS One, 7 (2012)
    [23] Mei, Q., Li, X., Zhang, K. et al. Genetic and methylation-induced loss of miR-181a2/181b2 within chr9q33.3 facilitates tumor growth of cervical cancer through the PIK3R3/Akt/FoxO signaling pathway Clin. Cancer Res., 23 (2017),pp. 575-586
    [24] Mei, Q., Xue, G., Li, X. et al. Methylation-induced loss of miR-484 in microsatellite-unstable colorectal cancer promotes both viability and IL-8 production via CD137L J. Pathol., 236 (2015),pp. 165-174
    [25] Meng, F., Henson, R., Lang, M. et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines Gastroenterology, 130 (2006),pp. 2113-2129
    [26] Mima, K., Nishihara, R., Yang, J. et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival Clin. Cancer Res., 22 (2016),pp. 3841-3848
    [27] Mohan, H.M., Ryan, E., Balasubramanian, I. et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer Eur. J. Surg. Oncol., 42 (2016),pp. 1680-1686
    [28] Pallasch, C.P., Patz, M., Park, Y.J. et al. Blood, 114 (2009),pp. 3255-3264
    [29] Pino, M.S., Chung, D.C. The chromosomal instability pathway in colon cancer Gastroenterology, 138 (2010),pp. 2059-2072
    [30] Sargent, D.J., Marsoni, S., Monges, G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer J. Clin. Oncol., 28 (2010),pp. 3219-3226
    [31] Shen, W.W., Zeng, Z., Zhu, W.X. et al. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells J. Mol. Med. (Berl.), 91 (2013),pp. 989-1000
    [32] Sinicrope, F.A., Sargent, D.J. Clinical implications of microsatellite instability in sporadic colon cancers Curr. Opin. Oncol., 21 (2009),pp. 369-373
    [33] Sinicrope, F.A., Sargent, D.J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications Clin. Cancer Res., 18 (2012),pp. 1506-1512
    [34] Tang, Q., Wu, W., Xu, X. et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression PLoS One, 8 (2013)
    [35] Thanki, K., Nicholls, M.E., Gajjar, A. et al. Consensus molecular subtypes of colorectal cancer and their clinical implications Int. Biol. Biomed. J., 3 (2017),pp. 105-111
    [36] Thomas, M.L., Hewett, P.J., Ruszkiewicz, A.R. et al. Clinicopathological predictors of benefit from adjuvant chemotherapy for stage C colorectal cancer: microsatellite unstable cases benefit Asia Pac. J. Clin. Oncol., 11 (2015),pp. 343-351
    [37] Valeri, N., Gasparini, P., Braconi, C. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2) Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 21098-21103
    [38] Van Dyck, F., Declercq, J., Braem, C.V. et al. PLAG1, the prototype of the PLAG gene family: versatility in tumour development (review) Int. J. Oncol., 30 (2007),pp. 765-774
    [39] Venderbosch, S., Nagtegaal, I.D., Maughan, T.S. et al. Clin. Cancer Res., 20 (2014),pp. 5322-5330
    [40] Voz, M.L., Agten, N.S., Van de Ven, W.J. et al. Cancer Res., 60 (2000),pp. 106-113
    [41] Wang, F., Wong, S.C., Chan, L.W. et al. Multiple regression analysis of mRNA-miRNA associations in colorectal cancer pathway BioMed Res. Int., 2014 (2014),p. 676724
    [42] Wang, Y., Zhao, L., Xiao, Q. et al. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells Gynecol. Oncol., 141 (2016),pp. 592-601
    [43] Xie, T., Huang, M., Wang, Y. et al. MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer Cell. Physiol. Biochem., 40 (2016),pp. 62-76
    [44] Xuan, Y., Yang, H., Zhao, L. et al. MicroRNAs in colorectal cancer: small molecules with big functions Cancer Lett., 360 (2015),pp. 89-105
    [45] Yang, I.P., Tsai, H.L., Miao, Z.F. et al. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients J. Transl. Med., 14 (2016),p. 108
    [46] Zhou, Y., Li, S., Li, J. et al. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer Cell. Physiol. Biochem., 42 (2017),pp. 1431-1446
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  21
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 录用日期:  2018-04-08
  • 修回日期:  2018-04-06
  • 网络出版日期:  2018-04-13
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回