留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of cancer: Oncohistones in action

Lei Qiu Xiaoyan Hu Qian Jing Xinyi Zeng Kui-Ming Chan Junhong Han

Lei Qiu, Xiaoyan Hu, Qian Jing, Xinyi Zeng, Kui-Ming Chan, Junhong Han. Mechanism of cancer: Oncohistones in action[J]. Journal of Genetics and Genomics, 2018, 45(5): 227-236. doi: 10.1016/j.jgg.2018.04.004
Citation: Lei Qiu, Xiaoyan Hu, Qian Jing, Xinyi Zeng, Kui-Ming Chan, Junhong Han. Mechanism of cancer: Oncohistones in action[J]. Journal of Genetics and Genomics, 2018, 45(5): 227-236. doi: 10.1016/j.jgg.2018.04.004

doi: 10.1016/j.jgg.2018.04.004

Mechanism of cancer: Oncohistones in action

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Abedalthagafi, M., Phillips, J.J., Kim, G.E. et al. The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas Mod. Pathol., 26 (2013),pp. 1425-1432
    [2] Adam, S., Polo, S.E., Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA Cell, 155 (2013),pp. 94-106
    [3] Adam, S., Polo, S.E., Almouzni, G. How to restore chromatin structure and function in response to DNA damage–let the chaperones play: delivered on 9 July 2013 at the 38th FEBS Congress in St Petersburg, Russia FEBS J., 281 (2014),pp. 2315-2323
    [4] Aihara, K., Mukasa, A., Gotoh, K. et al. Neuro. Oncol., 16 (2014),pp. 140-146
    [5] Amanatullah, D.F., Clark, T.R., Lopez, M.J. et al. Giant cell tumor of bone Orthopedics, 37 (2014),pp. 112-120
    [6] Amary, F., Berisha, F., Ye, H. et al. Am. J. Surg. Pathol., 41 (2017),pp. 1059-1068
    [7] Amary, M.F., Berisha, F., Mozela, R. et al. Histopathology, 69 (2016),pp. 121-127
    [8] Banaszynski, L.A., Wen, D., Dewell, S. et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells Cell, 155 (2013),pp. 107-120
    [9] Baubec, T., Colombo, D.F., Wirbelauer, C. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation Nature, 520 (2015),pp. 243-247
    [10] Bechet, D., Gielen, G.G., Korshunov, A. et al. Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas Acta Neuropathol., 128 (2014),pp. 733-741
    [11] Behjati, S., Tarpey, P.S., Presneau, N. et al. Nat. Genet., 45 (2013),pp. 1479-1482
    [12] Bender, S., Tang, Y., Lindroth, A.M. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas Cancer Cell, 24 (2013),pp. 660-672
    [13] Bjerke, L., Mackay, A., Nandhabalan, M. et al. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN Cancer Discov., 3 (2013),pp. 512-519
    [14] Broniscer, A., Baker, S.J., West, A.N. et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children J. Clin. Oncol., 25 (2007),pp. 682-689
    [15] Brown, Z.Z., Muller, M.M., Jain, S.U. et al. Strategy for “detoxification” of a cancer-derived histone mutant based on mapping its interaction with the methyltransferase PRC2 J. Am. Chem. Soc., 136 (2014),pp. 13498-13501
    [16] Buczkowicz, P., Bartels, U., Bouffet, E. et al. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications Acta Neuropathol., 128 (2014),pp. 573-581
    [17] Buczkowicz, P., Hoeman, C., Rakopoulos, P. et al. Nat. Genet., 46 (2014),pp. 451-456
    [18] Camelo-Piragua, S., Kesari, S. Further understanding of the pathology of glioma: implications for the clinic Expert Rev. Neurother., 16 (2016),pp. 1055-1065
    [19] Castel, D., Philippe, C., Calmon, R. et al. Acta Neuropathol., 130 (2015),pp. 815-827
    [20] Chan, K.M., Fang, D., Gan, H. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression Genes Dev., 27 (2013),pp. 985-990
    [21] Chan, K.M., Han, J., Fang, D. et al. Cell Cycle, 12 (2013),pp. 2546-2552
    [22] Chheda, Z.S., Kohanbash, G., Okada, K. et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy J. Exp. Med., 215 (2018),pp. 141-157
    [23] Chiang, J.C., Ellison, D.W. Molecular pathology of paediatric central nervous system tumours J. Pathol., 241 (2017),pp. 159-172
    [24] Creyghton, M.P., Cheng, A.W., Welstead, G.G. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 21931-21936
    [25] Diaz, A.K., Baker, S.J. The genetic signatures of pediatric high-grade glioma: no longer a one-act play Semin. Radiat. Oncol., 24 (2014),pp. 240-247
    [26] Duns, G., van den Berg, E., van Duivenbode, I. et al. Cancer Res., 70 (2010),pp. 4287-4291
    [27] Elsaesser, S.J., Goldberg, A.D., Allis, C.D. New functions for an old variant: no substitute for histone H3.3 Curr. Opin. Genet. Dev., 20 (2010),pp. 110-117
    [28] Fan, Y., Nikitina, T., Zhao, J. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation Cell, 123 (2005),pp. 1199-1212
    [29] Fang, D., Gan, H., Lee, J.H. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas Science, 352 (2016),pp. 1344-1348
    [30] Fang, R., Barbera, A.J., Xu, Y. et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation Mol. Cell, 39 (2010),pp. 222-233
    [31] Feng, J., Hao, S., Pan, C. et al. The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults Hum. Pathol., 46 (2015),pp. 1626-1632
    [32] Fontebasso, A.M., Liu, X.Y., Sturm, D. et al. Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail Brain Pathol., 23 (2013),pp. 210-216
    [33] Fontebasso, A.M., Papillon-Cavanagh, S., Schwartzentruber, J. et al. Nat. Genet., 46 (2014),pp. 462-466
    [34] Fontebasso, A.M., Schwartzentruber, J., Khuong-Quang, D.A. et al. Acta Neuropathol., 125 (2013),pp. 659-669
    [35] Fullgrabe, J., Kavanagh, E., Joseph, B. Histone onco-modifications Oncogene, 30 (2011),pp. 3391-3403
    [36] Funato, K., Major, T., Lewis, P.W. et al. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation Science, 346 (2014),pp. 1529-1533
    [37] Guo, R., Zheng, L., Park, J.W. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing Mol. Cell, 56 (2014),pp. 298-310
    [38] Hake, S.B., Garcia, B.A., Duncan, E.M. et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants J. Biol. Chem., 281 (2006),pp. 559-568
    [39] Haque, F., Varlet, P., Puntonet, J. et al. Evaluation of a novel antibody to define histone 3.3 G34R mutant brain tumours Acta Neuropathol. Commun., 5 (2017),p. 45
    [40] Hashizume, R., Andor, N., Ihara, Y. et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma Nat. Med., 20 (2014),pp. 1394-1396
    [41] Herz, H.M., Mohan, M., Garruss, A.S. et al. Genes Dev., 26 (2012),pp. 2604-2620
    [42] Herz, H.M., Morgan, M., Gao, X. et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling Science, 345 (2014),pp. 1065-1070
    [43] Jones, C., Baker, S.J. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma Nat. Rev. Cancer, 14 (2014),pp. 651-661
    [44] Jones, S., Li, M., Parsons, D.W. et al. Hum. Mutat., 33 (2012),pp. 100-103
    [45] Jones, S., Wang, T.L., Shih Ie, M. et al. Science, 330 (2010),pp. 228-231
    [46] Justin, N., Zhang, Y., Tarricone, C. et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2 Nat. Commun., 7 (2016),p. 11316
    [47] Kallappagoudar, S., Yadav, R.K., Lowe, B.R. et al. Histone H3 mutations–a special role for H3.3 in tumorigenesis? Chromosoma, 124 (2015),pp. 177-189
    [48] Karytinos, A., Forneris, F., Profumo, A. et al. A novel mammalian flavin-dependent histone demethylase J. Biol. Chem., 284 (2009),pp. 17775-17782
    [49] Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation Cell, 116 (2004),pp. 259-272
    [50] Khuong-Quang, D.A., Buczkowicz, P., Rakopoulos, P. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas Acta Neuropathol., 124 (2012),pp. 439-447
    [51] Khuong-Quang, D.A., Gerges, N., Jabado, N. Mutations in histone H3.3 and chromatin remodeling genes drive pediatric and young adult glioblastomas Med. Sci. (Paris), 28 (2012),pp. 809-812
    [52] Kuo, A.J., Cheung, P., Chen, K. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming Mol. Cell, 44 (2011),pp. 609-620
    [53] Lewis, P.W., Muller, M.M., Koletsky, M.S. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma Science, 340 (2013),pp. 857-861
    [54] Li, F., Mao, G., Tong, D. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha Cell, 153 (2013),pp. 590-600
    [55] Li, H., Kaminski, M.S., Li, Y. et al. Blood, 123 (2014),pp. 1487-1498
    [56] Lindroth, A.M., Plass, C. Recurrent H3.3 alterations in childhood tumors Nat. Genet., 45 (2013),pp. 1413-1414
    [57] Liu, X., McEachron, T.A., Schwartzentruber, J. et al. Histone H3 mutations in pediatric brain tumors Cold Spring Harb. Perspect. Biol., 6 (2014)
    [58] Lohr, J.G., Stojanov, P., Lawrence, M.S. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 3879-3884
    [59] Lu, C., Jain, S.U., Hoelper, D. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape Science, 352 (2016),pp. 844-849
    [60] Luger, K., Mader, A.W., Richmond, R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution Nature, 389 (1997),pp. 251-260
    [61] Maze, I., Noh, K.M., Soshnev, A.A. et al. Every amino acid matters: essential contributions of histone variants to mammalian development and disease Nat. Rev. Genet., 15 (2014),pp. 259-271
    [62] Mehta, S., Huillard, E., Kesari, S. et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma Cancer Cell, 19 (2011),pp. 359-371
    [63] Mohammad, F., Weissmann, S., Leblanc, B. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas Nat. Med., 23 (2017),pp. 483-492
    [64] Morgan, M.A., Shilatifard, A. (Poly)combing the pediatric cancer genome for answers Science, 340 (2013),pp. 823-824
    [65] Morin, R.D., Mungall, K., Pleasance, E. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing Blood, 122 (2013),pp. 1256-1265
    [66] Neri, F., Rapelli, S., Krepelova, A. et al. Intragenic DNA methylation prevents spurious transcription initiation Nature, 543 (2017),pp. 72-77
    [67] Newbold, R.F., Mokbel, K. Evidence for a tumour suppressor function of SETD2 in human breast cancer: a new hypothesis Anticancer Res., 30 (2010),pp. 3309-3311
    [68] Nikbakht, H., Panditharatna, E., Mikael, L.G. et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma Nat. Commun., 7 (2016),p. 11185
    [69] Okosun, J., Bodor, C., Wang, J. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma Nat. Genet., 46 (2014),pp. 176-181
    [70] Pai, C.C., Deegan, R.S., Subramanian, L. et al. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice Nat. Commun., 5 (2014),p. 4091
    [71] Pathania, M., De Jay, N., Maestro, N. et al. Cancer Cell, 32 (2017)
    [72] Piunti, A., Hashizume, R., Morgan, M.A. et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas Nat. Med., 23 (2017),pp. 493-500
    [73] Pugh, T.J., Weeraratne, S.D., Archer, T.C. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations Nature, 488 (2012),pp. 106-110
    [74] Schwartzentruber, J., Korshunov, A., Liu, X.Y. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma Nature, 482 (2012),pp. 226-231
    [75] Sturm, D., Witt, H., Hovestadt, V. et al. Cancer Cell, 22 (2012),pp. 425-437
    [76] Swartling, F.J., Savov, V., Persson, A.I. et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC Canc. Cell, 21 (2012),pp. 601-613
    [77] Talbert, P.B., Henikoff, S. Histone variants–ancient wrap artists of the epigenome Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 264-275
    [78] Venneti, S., Garimella, M.T., Sullivan, L.M. et al. Brain Pathol., 23 (2013),pp. 558-564
    [79] Wagner, E.J., Carpenter, P.B. Understanding the language of Lys36 methylation at histone H3 Nat. Rev. Mol. Cell Biol., 13 (2012),pp. 115-126
    [80] Wen, H., Li, Y., Xi, Y. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression Nature, 508 (2014),pp. 263-268
    [81] Wu, G., Broniscer, A., McEachron, T.A. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas Nat. Genet., 44 (2012),pp. 251-253
    [82] Wu, G., Diaz, A.K., Paugh, B.S. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma Nat. Genet., 46 (2014),pp. 444-450
    [83] Yang, S., Zheng, X., Lu, C. et al. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase Genes Dev., 30 (2016),pp. 1611-1616
    [84] Yang, S.M., Kim, B.J., Norwood Toro, L. et al. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 1708-1713
    [85] Yuen, B.T., Knoepfler, P.S. Histone H3.3 mutations: a variant path to cancer Cancer Cell, 24 (2013),pp. 567-574
    [86] Zhang, Q., Qi, S., Xu, M. et al. Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b Cell Res., 23 (2013),pp. 225-241
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 录用日期:  2018-04-18
  • 修回日期:  2018-04-17
  • 网络出版日期:  2018-04-30
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回