留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome

Si-Jin Cheng Shuai Jiang Fang-Yuan Shi Yang Ding Ge Gao

Si-Jin Cheng, Shuai Jiang, Fang-Yuan Shi, Yang Ding, Ge Gao. Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome[J]. Journal of Genetics and Genomics, 2018, 45(7): 373-379. doi: 10.1016/j.jgg.2018.05.005
Citation: Si-Jin Cheng, Shuai Jiang, Fang-Yuan Shi, Yang Ding, Ge Gao. Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome[J]. Journal of Genetics and Genomics, 2018, 45(7): 373-379. doi: 10.1016/j.jgg.2018.05.005

doi: 10.1016/j.jgg.2018.05.005

Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Alipanahi, B., Delong, A., Weirauch, M.T. et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning Nat. Biotechnol., 33 (2015),pp. 831-838
    [2] Bansal, V., Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem Bioinformatics, 24 (2008),pp. I153-I159
    [3] Boyle, A.P., Hong, E.L., Hariharan, M. et al. Annotation of functional variation in personal genomes using RegulomeDB Genome Res., 22 (2012),pp. 1790-1797
    [4] Cheng, S.J., Shi, F.Y., Liu, H. et al. Accurately annotate compound effects of genetic variants using a context-sensitive framework Nucleic Acids Res., 45 (2017),p. e82
    [5] Cibulskis, K., Lawrence, M.S., Carter, S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples Nat. Biotechnol., 31 (2013),pp. 213-219
    [6] Coetzee, S.G., Coetzee, G.A., Hazelett, D.J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites Bioinformatics, 31 (2015),pp. 3847-3849
    [7] Cooper, D.N., Stenson, P.D., Chuzhanova, N.A. The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms Curr. Protoc. Bioinformatics (2006)
    [8] Delaneau, O., Marchini, J., Zagury, J.F. A linear complexity phasing method for thousands of genomes Nat. Methods, 9 (2012),pp. 179-181
    [9] Edge, P., Bafna, V., Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies Genome Res., 27 (2016),pp. 801-812
    [10] Fu, Y., Liu, Z., Lou, S. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer Genome Biol., 15 (2014),p. 480
    [11] Huang, Q., Whitington, T., Gao, P. et al. Nat. Genet., 46 (2014),pp. 126-135
    [12] Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
    [13] Kumar, S., Ambrosini, G., Bucher, P. SNP2TFBS ‒ a database of regulatory SNPs affecting predicted transcription factor binding site affinity Nucleic Acids Res., 45 (2017),pp. D139-D144
    [14] Lappalainen, T., Sammeth, M., Friedlander, M.R. et al. Transcriptome and genome sequencing uncovers functional variation in humans Nature, 501 (2013),pp. 506-511
    [15] Latchman, D.S. Transcription factors: an overview Int. J. Biochem. Cell Biol., 29 (1997),pp. 1305-1312
    [16] Liu, N.Q., Ter Huurne, M., Nguyen, L.N. et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression Nat. Commun., 8 (2017),p. 14418
    [17] Machulla, H.K., Steinborn, F., Schaaf, A. et al. Brain glioma and human leukocyte antigens (HLA) ‒ is there an association J. Neurooncol., 52 (2001),pp. 253-261
    [18] Mathelier, A., Fornes, O., Arenillas, D.J. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles Nucleic Acids Res., 44 (2016),pp. D110-D115
    [19] Maurano, M.T., Haugen, E., Sandstrom, R. et al. Nat. Genet., 47 (2015),pp. 1393-1401
    [20] McLaren, W., Gil, L., Hunt, S.E. et al. The ensembl variant effect predictor Genome Biol., 17 (2016),p. 122
    [21] Pertea, M., Pertea, G.M., Antonescu, C.M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nat. Biotechnol., 33 (2015),pp. 290-295
    [22] Sherry, S.T., Ward, M.H., Kholodov, M. et al. dbSNP: the NCBI database of genetic variation Nucleic Acids Res., 29 (2001),pp. 308-311
    [23] Touzet, H., Varre, J.S. Algorithms Mol. Biol., 2 (2007),p. 15
    [24] The 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M. et al. A global reference for human genetic variation Nature, 526 (2015),pp. 68-74
    [25] The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [26] The GTEx Consortium The genotype-tissue expression (GTEx) project Nat. Genet., 45 (2013),pp. 580-585
    [27] Vergara, I.A., Frech, C., Chen, N. CooVar: co-occurring variant analyzer BMC Res. Notes, 5 (2012),p. 615
    [28] Ward, L.D., Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease Nucleic Acids Res., 44 (2016),pp. D877-D881
    [29] Wei, L., Liu, L.T., Conroy, J.R. et al. MAC: identifying and correcting annotation for multi-nucleotide variations BMC Genomics, 16 (2015),p. 569
    [30] Wingender, E., Dietze, P., Karas, H. et al. TRANSFAC: a database on transcription factors and their DNA binding sites Nucleic Acids Res., 24 (1996),pp. 238-241
    [31] Zhang, H.M., Chen, H., Liu, W. et al. AnimalTFDB: a comprehensive animal transcription factor database Nucleic Acids Res., 40 (2012),pp. D144-D149
    [32] Zhou, X., Lowdon, R.F., Li, D. et al. Exploring long-range genome interactions using the WashU Epigenome Browser Nat. Methods, 10 (2013),pp. 375-376
    [33] Zuo, C., Shin, S., Keles, S. atSNP: transcription factor binding affinity testing for regulatory SNP detection Bioinformatics, 31 (2015),pp. 3353-3355
  • 加载中
计量
  • 文章访问数:  120
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-31
  • 录用日期:  2018-05-25
  • 修回日期:  2018-05-03
  • 网络出版日期:  2018-07-07
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回