留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish

Yixia Wang Yanchao Han Pengfei Xu Shihui Ding Guangyuan Li Hongbin Jin Yaping Meng Anming Meng Shunji Jia

Yixia Wang, Yanchao Han, Pengfei Xu, Shihui Ding, Guangyuan Li, Hongbin Jin, Yaping Meng, Anming Meng, Shunji Jia. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish[J]. Journal of Genetics and Genomics, 2018, 45(8): 443-453. doi: 10.1016/j.jgg.2018.05.008
Citation: Yixia Wang, Yanchao Han, Pengfei Xu, Shihui Ding, Guangyuan Li, Hongbin Jin, Yaping Meng, Anming Meng, Shunji Jia. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish[J]. Journal of Genetics and Genomics, 2018, 45(8): 443-453. doi: 10.1016/j.jgg.2018.05.008

doi: 10.1016/j.jgg.2018.05.008

prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Aman, A., Nguyen, M., Piotrowski, T. Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis Dev. Biol., 349 (2011),pp. 470-482
    [2] Aman, A., Piotrowski, T. Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression Dev. Cell, 15 (2008),pp. 749-761
    [3] Berghmans, S., Murphey, R.D., Wienholds, E. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 407-412
    [4] Chan, J.Y., Chen, Y.C., Liu, S.T. et al. Characterization of a new mouse p53 variant: loss-of-function and gain-of-function J. Biomed. Sci., 21 (2014),p. 40
    [5] Chen, X., Liu, Y., Sheng, X. et al. Hum. Mol. Genet., 23 (2014),pp. 2926-2939
    [6] Chitramuthu, B.P., Bennett, H.P. J. Vis. Exp. (2013)
    [7] Culbertson, M.R., Neeno-Eckwall, E. RNA, 11 (2005),pp. 1333-1339
    [8] Dalle Nogare, D., Somers, K., Rao, S. et al. Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium Development, 141 (2014),pp. 3188-3196
    [9] Dona, E., Barry, J.D., Valentin, G. et al. Directional tissue migration through a self-generated chemokine gradient Nature, 503 (2013),pp. 285-289
    [10] Ghosh, A., Stewart, D., Matlashewski, G. Regulation of human p53 activity and cell localization by alternative splicing Mol. Cell Biol., 24 (2004),pp. 7987-7997
    [11] Gompel, N., Cubedo, N., Thisse, C. et al. Pattern formation in the lateral line of zebrafish Mech. Dev., 105 (2001),pp. 69-77
    [12] Han, X., Wei, Y., Wang, H. et al. Nonsense-mediated mRNA decay: a 'nonsense' pathway makes sense in stem cell biology Nucleic Acids Res., 46 (2018),pp. 1038-1051
    [13] Han, Y., Mu, Y., Li, X. et al. Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28 Hum. Mol. Genet., 20 (2011),pp. 3213-3226
    [14] Horowitz, D.S., Kobayashi, R., Krainer, A.R. A new cyclophilin and the human homologues of yeast Prp3 and Prp4 form a complex associated with U4/U6 snRNPs RNA, 3 (1997),pp. 1374-1387
    [15] Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [16] Lecaudey, V., Cakan-Akdogan, G., Norton, W.H. et al. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium Development, 135 (2008),pp. 2695-2705
    [17] Lei, L., Yan, S.Y., Yang, R. et al. Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors Nucleic Acids Res., 45 (2017),pp. 3422-3436
    [18] Lerner, M.R., Steitz, J.A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus Proc. Natl. Acad. Sci. U. S. A., 76 (1979),pp. 5495-5499
    [19] Linder, B., Dill, H., Hirmer, A. et al. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa Hum. Mol. Genet., 20 (2011),pp. 368-377
    [20] Linder, B., Hirmer, A., Gal, A. et al. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa PLoS One, 9 (2014)
    [21] Luker, K.E., Steele, J.M., Mihalko, L.A. et al. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands Oncogene, 29 (2010),pp. 4599-4610
    [22] Metcalfe, W.K. Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish J. Comp. Neurol., 238 (1985),pp. 218-224
    [23] Pasternack, S.M., Refke, M., Paknia, E. et al. Am. J. Hum. Genet., 92 (2013),pp. 81-87
    [24] Patel, A.A., Steitz, J.A. Splicing double: insights from the second spliceosome Nat. Rev. Mol. Cell Biol., 4 (2003),pp. 960-970
    [25] Robinson, M.D., McCarthy, D.J., Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics, 26 (2010),pp. 139-140
    [26] Schweingruber, C., Rufener, S.C., Zund, D. et al. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells Biochim. Biophys. Acta, 1829 (2013),pp. 612-623
    [27] Schwerk, C., Schulze-Osthoff, K. Regulation of apoptosis by alternative pre-mRNA splicing Mol. Cell, 19 (2005),pp. 1-13
    [28] Shen, S., Park, J.W., Lu, Z.X. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. E5593-E5601
    [29] Tanackovic, G., Ransijn, A., Ayuso, C. et al. Am. J. Hum. Genet., 88 (2011),pp. 643-649
    [30] Tanackovic, G., Ransijn, A., Thibault, P. et al. Hum. Mol. Genet., 20 (2011),pp. 2116-2130
    [31] Tarn, W.Y., Steitz, J.A. Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge Trends Biochem. Sci., 22 (1997),pp. 132-137
    [32] Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [33] Tokheim, C., Park, J.W., Xing, Y. PrimerSeq: design and visualization of RT-PCR primers for alternative splicing using RNA-seq data Dev. Reprod. Biol., 12 (2014),pp. 105-109
    [34] Trapnell, C., Pachter, L., Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq Bioinformatics, 25 (2009),pp. 1105-1111
    [35] Valentin, G., Haas, P., Gilmour, D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b Curr. Biol., 17 (2007),pp. 1026-1031
    [36] Wu, Q., Krainer, A.R. Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs RNA, 3 (1997),pp. 586-601
    [37] Xing, C., Gong, B., Xue, Y. et al. TGFbeta1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway J. Mol. Cell Biol., 7 (2015),pp. 48-61
    [38] Xiong, C., Liu, X., Meng, A. The kinase activity-deficient isoform of the protein araf antagonizes Ras/mitogen-activated protein kinase (Ras/MAPK) signaling in the zebrafish embryo J. Biol. Chem., 290 (2015),pp. 25512-25521
    [39] Yu, Y., Chi, B., Xia, W. et al. U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish Nucleic Acids Res., 43 (2015),pp. 3208-3218
    [40] Zhao, X., Zhao, L., Tian, T. et al. Interruption of cenph causes mitotic failure and embryonic death, and its haploinsufficiency suppresses cancer in zebrafish J. Biol. Chem., 285 (2010),pp. 27924-27934
    [41] Zheng, X., Yang, S., Han, Y. et al. Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos J. Biol. Chem., 287 (2012),pp. 38254-38264
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  35
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-24
  • 录用日期:  2018-05-17
  • 修回日期:  2018-04-20
  • 网络出版日期:  2018-08-07
  • 刊出日期:  2018-08-20

目录

    /

    返回文章
    返回