留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

fGWAS: An R package for genome-wide association analysis with longitudinal phenotypes

Zhong Wang Nating Wang Rongling Wu Zuoheng Wang

Zhong Wang, Nating Wang, Rongling Wu, Zuoheng Wang. fGWAS: An R package for genome-wide association analysis with longitudinal phenotypes[J]. Journal of Genetics and Genomics, 2018, 45(7): 411-413. doi: 10.1016/j.jgg.2018.06.006
Citation: Zhong Wang, Nating Wang, Rongling Wu, Zuoheng Wang. fGWAS: An R package for genome-wide association analysis with longitudinal phenotypes[J]. Journal of Genetics and Genomics, 2018, 45(7): 411-413. doi: 10.1016/j.jgg.2018.06.006

doi: 10.1016/j.jgg.2018.06.006

fGWAS: An R package for genome-wide association analysis with longitudinal phenotypes

More Information
  • [1] Altshuler, D., Daly, M.J., Lander, E.S. Genetic mapping in human disease Science, 322 (2008),pp. 881-888
    [2] Das, K., Li, J., Wang, Z. et al. A dynamic model for genome-wide association studies Hum. Genet., 129 (2011),pp. 629-639
    [3] Fan, R., Albert, P.S., Schisterman, E.F. A discussion of gene-gene and gene-environment interactions and longitudinal genetic analysis of complex traits Stat. Med., 31 (2012),pp. 2565-2568
    [4] Furlotte, N.A., Eskin, E., Eyheramendy, S. Genome-wide association mapping with longitudinal data Genet. Epidemiol., 36 (2012),pp. 463-471
    [5] Hirschhorn, J.N., Daly, M.J. Genome-wide association studies for common diseases and complex traits Nat. Rev. Genet., 6 (2005),pp. 95-108
    [6] Jaffrezic, F., Thompson, R., Hill, W.G. Structured antedependence models for genetic analysis of repeated measures on multiple quantitative traits Genet. Res., 82 (2003),pp. 55-65
    [7] Li, J., Wang, Z., Li, R. et al. Bayesian group LASSO for nonparametric varying-coefficient models with application to functional genome-wide association studies Ann. Appl. Stat., 9 (2015),pp. 640-664
    [8] Londono, D., Chen, K.M., Musolf, A. et al. A novel method for analyzing genetic association with longitudinal phenotypes Stat. Appl. Genet. Mol. Biol., 12 (2013),pp. 241-261
    [9] Luo, J., Berg, A., Ahn, K. et al.
    [10] Meirelles, O.D., Ding, J., Tanaka, T. et al. SHAVE: shrinkage estimator measured for multiple visits increases power in GWAS of quantitative traits Eur. J. Hum. Genet., 21 (2013),pp. 673-679
    [11] Ning, C., Kang, H., Zhou, L. et al. Performance gains in genome-wide association studies for longitudinal traits via modeling time-varied effects Sci. Rep., 7 (2017),p. 590
    [12] Risch, N., Merikangas, K. The future of genetic studies of complex human diseases Science, 273 (1996),pp. 1516-1517
    [13] Sikorska, K., Rivadeneira, F., Groenen, P.J. et al. Fast linear mixed model computations for genome-wide association studies with longitudinal data Stat. Med., 32 (2013),pp. 165-180
    [14] Splansky, G.L., Corey, D., Yang, Q. et al. The third generation cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination Am. J. Epidemiol., 165 (2007),pp. 1328-1335
    [15] Suriben, R., Kaihara, K.A., Paolino, M. et al. β-Cell insulin secretion requires the ubiquitin ligase COP1 Cell, 163 (2015),pp. 1457-1467
    [16] Wang, Y., Huang, C., Fang, Y. et al. Flexible semiparametric analysis of longitudinal genetic studies by reduced rank smoothing J. R. Stat. Soc. Ser. C Appl. Stat., 61 (2012),pp. 1-24
    [17] Wang, Z., Pang, X., Wu, W. et al. Modeling phenotypic plasticity in growth trajectories: a statistical framework Evolution, 68 (2014),pp. 81-91
    [18] Wang, Z., Xu, K., Zhang, X. et al. Longitudinal SNP-set association analysis of quantitative phenotypes Genet. Epidemiol., 41 (2017),pp. 81-93
    [19] Welter, D., MacArthur, J., Morales, J. et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations Nucleic Acids Res., 42 (2014),pp. D1001-D1006
    [20] Wu, R., Lin, M. Functional mapping - how to map and study the genetic architecture of dynamic complex traits Nat. Rev. Genet., 7 (2006),pp. 229-237
  • 期刊类型引用(4)

    1. Xia, H., Hao, Z., Shen, Y. et al. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. Plant Journal, 2023. 必应学术
    2. Yuan, M., Xu, X.S., Yang, Y. et al. SCEBE: An efficient and scalable algorithm for genome-wide association studies on longitudinal outcomes with mixed-effects modeling. Briefings in Bioinformatics, 2021, 22(3): bbaa130. 必应学术
    3. Gan, J., Cao, Y., Jiang, L. et al. Mapping covariation quantitative trait loci that control organ growth and whole-plant biomass. Frontiers in Plant Science, 2019. 必应学术
    4. Wang, P., Wang, D., Wang, J. et al. QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica | [胡杨幼苗生长相关性状QTL上位性分析]. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 2018, 40(12): 49-59. 百度学术

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  192
  • HTML全文浏览量:  72
  • PDF下载量:  6
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-01-10
  • 录用日期:  2018-06-27
  • 修回日期:  2018-06-18
  • 网络出版日期:  2018-07-10
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回