留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparison of next-generation sequencing analysis methods for cancer xenograft samples

Wentao Dai Jixiang Liu Quanxue Li Wei Liu Yi-Xue Li Yuan-Yuan Li

Wentao Dai, Jixiang Liu, Quanxue Li, Wei Liu, Yi-Xue Li, Yuan-Yuan Li. A comparison of next-generation sequencing analysis methods for cancer xenograft samples[J]. Journal of Genetics and Genomics, 2018, 45(7): 345-350. doi: 10.1016/j.jgg.2018.07.001
Citation: Wentao Dai, Jixiang Liu, Quanxue Li, Wei Liu, Yi-Xue Li, Yuan-Yuan Li. A comparison of next-generation sequencing analysis methods for cancer xenograft samples[J]. Journal of Genetics and Genomics, 2018, 45(7): 345-350. doi: 10.1016/j.jgg.2018.07.001

doi: 10.1016/j.jgg.2018.07.001

A comparison of next-generation sequencing analysis methods for cancer xenograft samples

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ahdesmaki, M.J., Gray, S.R., Johnson, J.H. et al. Disambiguate: An open-source application for disambiguating two species in next generation sequencing data from grafted samples F1000Res., 5 (2016),p. 2741
    [2] Alizadeh, A.A., Aranda, V., Bardelli, A. et al. Toward understanding and exploiting tumor heterogeneity Nat. Med., 21 (2015),pp. 846-853
    [3] Aparicio, S., Hidalgo, M., Kung, A.L. Examining the utility of patient-derived xenograft mouse models Nat. Rev. Cancer, 15 (2015),pp. 311-316
    [4] Bawa, A., Anilakumar, K. Genetically modified foods: safety, risks and public concerns ‒ a review J. Food Sci. Technol., 50 (2013),pp. 1035-1046
    [5] Bernardo, C., Costa, C., Sousa, N. et al. Patient-derived bladder cancer xenografts: a systematic review Transl. Res., 166 (2015),pp. 324-331
    [6] Bruna, A., Rueda, O.M., Greenwood, W. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds Cell, 167 (2016),pp. 260-274
    [7] Buckingham, E.M., Carpenter, J.E., Jackson, W. et al. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 256-261
    [8] Callari, M., Batra, A.S., Batra, R.N. et al. Computational approach to discriminate human and mouse sequences in patient-derived tumour xenografts BMC Genomics, 19 (2018),p. 19
    [9] Calles, A., Rubio-Viqueira, B., Hidalgo, M. Primary human non-small cell lung and pancreatic tumorgraft models ‒ utility and applications in drug discovery and tumor biology Curr. Protoc. Pharmacol. (2013)
    [10] Cassidy, J.W., Caldas, C., Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts Cancer Res., 75 (2015),pp. 2963-2968
    [11] Cibulskis, K., Lawrence, M.S., Carter, S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples Nat. Biotechnol., 31 (2013),pp. 213-219
    [12] Conway, T., Wazny, J., Bromage, A. et al. Xenome – a tool for classifying reads from xenograft samples Bioinformatics, 28 (2012),pp. i172-i178
    [13] Cook, J., Tyor, W. The pathogenesis of HIV-associated dementia: recent advances using a SCID mouse model of HIV-encephalitis Einstein J. Biol. Med., 22 (2006),pp. 32-40
    [14] Cusinato, R., Pacenti, M., Martello, T. et al. Effectiveness of hydrogen peroxide and electron-beam irradiation treatment for removal and inactivation of viruses in equine-derived xenografts J. Virol. Methods, 232 (2016),pp. 39-46
    [15] Cvetkovich, T.A., Lazar, E., Blumberg, B.M. et al. Human immunodeficiency virus type 1 infection of neural xenografts Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 5162-5166
    [16] Davis, L.A. Genetically engineered crops Engineering, 2 (2016),pp. 268-269
    [17] Day, C.P., Merlino, G., Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges Cell, 163 (2015),pp. 39-53
    [18] DeRose, Y.S., Wang, G., Lin, Y.-C. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes Nat. Med., 17 (2011),pp. 1514-1520
    [19] DeRose, Y.S., Wang, G., Lin, Y.C. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes Nat. Med., 17 (2011),pp. 1514-1520
    [20] Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
    [21] Fidler, I.J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis Cancer Metastasis Rev., 5 (1986),pp. 29-49
    [22] Fishman, J.A., Scobie, L., Takeuchi, Y. Xenotransplantation – associated infectious risk: a WHO consultation Xenotransplantation, 19 (2012),pp. 72-81
    [23] Gao, H., Korn, J.M., Ferretti, S. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response Nat. Med., 21 (2015),pp. 1318-1325
    [24] Girotti, M.R., Gremel, G., Lee, R. et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma Cancer Discov., 6 (2016),pp. 286-299
    [25] Han, H., Peng, J., Han, Y. et al. PLoS One, 8 (2013)
    [26] Hidalgo, M., Amant, F., Biankin, A.V. et al. Patient-derived xenograft models: an emerging platform for translational cancer research Cancer Discov., 4 (2014),pp. 998-1013
    [27] Hodgkinson, C.L., Morrow, C.J., Li, Y. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer Nat. Med., 20 (2014),pp. 897-903
    [28] Hu, Y., Sun, L., Yuan, Z. et al. Sci. Rep., 7 (2017),p. 11311
    [29] Julien, S., Merino-Trigo, A., Lacroix, L. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer Clin. Cancer Res., 18 (2012),pp. 5314-5328
    [30] Khandelwal, G., Girotti, M.R., Smowton, C. et al. Next-generation sequencing analysis and algorithms for PDX and CDX models Mol. Cancer Res., 15 (2017),pp. 1012-1016
    [31] Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
    [32] Kim, D., Pertea, G., Trapnell, C. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions Genome Biol., 14 (2013),p. R36
    [33] Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods, 9 (2012),pp. 357-359
    [34] Ledford, H. US cancer institute to overhaul tumour cell lines Nature, 530 (2016),p. 391
    [35] Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data Bioinformatics, 27 (2011),pp. 2987-2993
    [36] Li, H., Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [37] Li, H., Ruan, J., Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores Genome Res., 18 (2008),pp. 1851-1858
    [38] Li, H., Zhu, Y., Tang, X. et al. Integrated analysis of transcriptome in cancer patient-derived xenografts PLoS One, 10 (2015)
    [39] Li, L., Wei, Y., To, C. et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact Nat. Commun., 5 (2014),p. 5469
    [40] Li, R., Quan, S., Yan, X. et al. Molecular characterization of genetically-modified crops: challenges and strategies Biotechnol. Adv., 35 (2017),pp. 302-309
    [41] Li, R., Yu, C., Li, Y. et al. SOAP2: an improved ultrafast tool for short read alignment Bioinformatics, 25 (2009),pp. 1966-1967
    [42] Lin, M.-T., Tseng, L.-H., Kamiyama, H. et al. Quantifying the relative amount of mouse and human DNA in cancer xenografts using species-specific variation in gene length Biotechniques, 48 (2010),p. 211
    [43] Ling, S., Hu, Z., Yang, Z. et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. E6496-E6505
    [44] Martincorena, I., Raine, K.M., Gerstung, M. et al. Universal patterns of selection in cancer and somatic tissues Cell, 171 (2017),pp. 1029-1041
    [45] McCarthy, D.J., Chen, Y., Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation Nucleic Acids Res., 40 (2012),pp. 4288-4297
    [46] Moro, M., Bertolini, G., Tortoreto, M. et al. Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells J. Biomed. Biotechnol., 2012 (2012),p. 568567
    [47] Morton, C.L., Houghton, P.J. Establishment of human tumor xenografts in immunodeficient mice Nat. Protoc., 2 (2007),pp. 247-250
    [48] Ni, X., Zhuo, M., Su, Z. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 21083-21088
    [49] Niemann, H., Petersen, B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation Transgenic Res., 25 (2016),pp. 361-374
    [50] Niu, D., Wei, H.-J., Lin, L. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 Science, 357 (2017),pp. 1303-1307
    [51] Nunes, M., Vrignaud, P., Vacher, S. et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data Cancer Res., 75 (2015),pp. 1560-1566
    [52] Pauli, C., Hopkins, B.D., Prandi, D. et al. Cancer Discov., 7 (2017),pp. 462-477
    [53] Pearson, A.T., Finkel, K.A., Warner, K.A. et al. Patient-derived xenograft (PDX) tumors increase growth rate with time Oncotarget, 7 (2016),pp. 7993-8005
    [54] Rossello, F.J., Tothill, R.W., Britt, K. et al. Next-generation sequence analysis of cancer xenograft models PLoS One, 8 (2013)
    [55] Salm, M., Schelhorn, S.-E., Lancashire, L. et al. pdxBlacklist: identifying artefactual variants in patient-derived xenograft samples bioRxiv (2017)
    [56] Siolas, D., Hannon, G.J. Patient-derived tumor xenografts: transforming clinical samples into mouse models Cancer Res., 73 (2013),pp. 5315-5319
    [57] Stewart, E., Federico, S.M., Chen, X. et al. Orthotopic patient-derived xenografts of paediatric solid tumours Nature, 549 (2017),pp. 96-100
    [58] Teicher, B.A.
    [59] Tentler, J.J., Tan, A.C., Weekes, C.D. et al. Patient-derived tumour xenografts as models for oncology drug development Nat. Rev. Clin. Oncol., 9 (2012),pp. 338-350
    [60] Tso, K.-Y., Lee, S.D., Lo, K.-W. et al. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts? BMC Genomics, 15 (2014),p. 1172
    [61] Venditti, J.M., Wesley, R.A., Plowman, J. Adv. Pharmacol. Chemother., 20 (1984),pp. 1-20
    [62] Wang, D.C., Wang, W., Zhu, B. et al. Lung cancer heterogeneity and new strategies for drug therapy Annu. Rev. Pharmacol. Toxicol., 58 (2017),pp. 531-546
    [63] Wang, K., Singh, D., Zeng, Z. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery Nucleic Acids Res., 38 (2010),p. e178
    [64] Wei, Q., Ye, Z., Zhong, X. et al. Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis Ann. Oncol., 28 (2017),pp. 2135-2141
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 录用日期:  2018-07-09
  • 修回日期:  2018-06-15
  • 网络出版日期:  2018-07-25
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回