留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells

Xin Zhou Chun Xiao Yu Li Yanna Shang Dongqin Yin Siying Li Bo Xiang Ran Lu Yi Ji Yang Wu Wentong Meng Hongyan Zhu Jin Liu Huozhen Hu Xianming Mo Hong Xu

Xin Zhou, Chun Xiao, Yu Li, Yanna Shang, Dongqin Yin, Siying Li, Bo Xiang, Ran Lu, Yi Ji, Yang Wu, Wentong Meng, Hongyan Zhu, Jin Liu, Huozhen Hu, Xianming Mo, Hong Xu. Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells[J]. Journal of Genetics and Genomics, 2018, 45(8): 433-442. doi: 10.1016/j.jgg.2018.08.001
Citation: Xin Zhou, Chun Xiao, Yu Li, Yanna Shang, Dongqin Yin, Siying Li, Bo Xiang, Ran Lu, Yi Ji, Yang Wu, Wentong Meng, Hongyan Zhu, Jin Liu, Huozhen Hu, Xianming Mo, Hong Xu. Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells[J]. Journal of Genetics and Genomics, 2018, 45(8): 433-442. doi: 10.1016/j.jgg.2018.08.001

doi: 10.1016/j.jgg.2018.08.001

Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells

More Information
    Corresponding author: E-mail address: xuhong@scu.edu.cn (Hong Xu)
  • These authors contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Anderson, R.G., Brenner, R.M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct J. Cell Biol., 50 (1971),pp. 10-34
    [2] Archer, J., Solomon, F. Deconstructing the microtubule-organizing center Cell, 76 (1994),pp. 589-591
    [3] Baas, A.F., Kuipers, J., van der Wel, N.N. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD Cell, 116 (2004),pp. 457-466
    [4] Bacallao, R., Antony, C., Dotti, C. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium J. Cell Biol., 109 (1989),pp. 2817-2832
    [5] Bartolini, F., Gundersen, G.G. Generation of noncentrosomal microtubule arrays J. Cell Sci., 119 (2006),pp. 4155-4163
    [6] Berti, C., Fontanella, B., Ferrentino, R. et al. Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules BMC Cell Biol., 5 (2004),p. 9
    [7] Biemar, F., Argenton, F., Schmidtke, R. et al. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet Dev. Biol., 230 (2001),pp. 189-203
    [8] Bre, M.H., Kreis, T.E., Karsenti, E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules J. Cell Biol., 105 (1987),pp. 1283-1296
    [9] Brodu, V., Baffet, A.D., Le Droguen, P.M. et al. Dev. Cell, 18 (2010),pp. 790-801
    [10] Dalgin, G., Ward, A.B., Hao le, T. et al. Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas Development, 138 (2011),pp. 4597-4608
    [11] Drubin, D.G., Nelson, W.J. Origins of cell polarity Cell, 84 (1996),pp. 335-344
    [12] Eaton, S., Simons, K. Apical, basal, and lateral cues for epithelial polarization Cell, 82 (1995),pp. 5-8
    [13] Eno, C., Solanki, B., Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition Development, 143 (2016),pp. 1585-1599
    [14] Feldman, J.L., Priess, J.R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization Curr. Biol., 22 (2012),pp. 575-582
    [15] Huang, H., Vogel, S.S., Liu, N. et al. Analysis of pancreatic development in living transgenic zebrafish embryos Mol. Cell. Endocrinol., 177 (2001),pp. 117-124
    [16] Jankovics, F., Brunner, D. Dev. Cell, 11 (2006),pp. 375-385
    [17] Karsenti, E., Nedelec, F., Surrey, T. Modelling microtubule patterns Nat. Cell Biol., 8 (2006),pp. 1204-1211
    [18] Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [19] Kunimoto, K., Yamazaki, Y., Nishida, T. et al. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet Cell, 148 (2012),pp. 189-200
    [20] Lee, C., Scherr, H.M., Wallingford, J.B. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change Development, 134 (2007),pp. 1431-1441
    [21] Luders, J., Stearns, T. Microtubule-organizing centres: a re-evaluation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 161-167
    [22] Macdonald, R. Zebrafish immunohistochemistry Meth. Mol. Biol., 127 (1999),pp. 77-88
    [23] Mogensen, M.M., Malik, A., Piel, M. et al. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein J. Cell Sci., 113 (2000),pp. 3013-3023
    [24] Nashchekin, D., Fernandes, A.R., St Johnston, D. Dev. Cell, 38 (2016),pp. 61-72
    [25] Navis, A., Marjoram, L., Bagnat, M. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish Development, 140 (2013),pp. 1703-1712
    [26] Nejsum, L.N., Nelson, W.J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity J. Cell Biol., 178 (2007),pp. 323-335
    [27] Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis Dev. Biol., 286 (2005),pp. 114-135
    [28] Rajasekaran, A.K., Hojo, M., Huima, T. et al. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions J. Cell Biol., 132 (1996),pp. 451-463
    [29] Rodriguez-Fraticelli, A.E., Auzan, M., Alonso, M.A. et al. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis J. Cell Biol., 198 (2012),pp. 1011-1023
    [30] Sanchez, A.D., Feldman, J.L. Microtubule-organizing centers: from the centrosome to non-centrosomal sites Curr. Opin. Cell Biol., 44 (2017),pp. 93-101
    [31] Saraga-Babic, M., Vukojevic, K., Bocina, I. et al. Ciliogenesis in normal human kidney development and post-natal life Pediatr. Nephrol., 27 (2012),pp. 55-63
    [32] Suzuki, A., Yamanaka, T., Hirose, T. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures J. Cell Biol., 152 (2001),pp. 1183-1196
    [33] Suzuki, M., Hara, Y., Takagi, C. et al. Development, 137 (2010),pp. 2329-2339
    [34] Tanaka, N., Meng, W., Nagae, S. et al. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 20029-20034
    [35] Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [36] Toya, M., Takeichi, M. Organization of non-centrosomal microtubules in epithelial cells Cell Struct. Funct., 41 (2016),pp. 127-135
    [37] Wang, S., Wu, D., Quintin, S. et al. eLife, 4 (2015)
    [38] Wodarz, A. Establishing cell polarity in development Nat. Cell Biol., 4 (2002),pp. E39-E44
    [39] Yee, N.S., Lorent, K., Pack, M. Exocrine pancreas development in zebrafish Dev. Biol., 284 (2005),pp. 84-101
    [40] Zecchin, E., Mavropoulos, A., Devos, N. et al. Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates Dev. Biol., 268 (2004),pp. 174-184
    [41] Zhao, H., Zhu, L., Zhu, Y. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis Nat. Cell Biol., 15 (2013),pp. 1434-1444
    [42] Zhou, K., Rolls, M.M., Hall, D.H. et al. J. Cell Biol., 186 (2009),pp. 229-241
  • 加载中
计量
  • 文章访问数:  76
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 录用日期:  2018-08-05
  • 修回日期:  2018-08-03
  • 网络出版日期:  2018-08-24
  • 刊出日期:  2018-08-20

目录

    /

    返回文章
    返回