留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways

Chen Ai Lei Kong

Chen Ai, Lei Kong. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways[J]. Journal of Genetics and Genomics, 2018, 45(9): 489-504. doi: 10.1016/j.jgg.2018.08.002
Citation: Chen Ai, Lei Kong. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways[J]. Journal of Genetics and Genomics, 2018, 45(9): 489-504. doi: 10.1016/j.jgg.2018.08.002

doi: 10.1016/j.jgg.2018.08.002

CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Akers, S.M., O'Leary, H.A., Minnear, F.L. et al. VE-cadherin and PECAM-1 enhance ALL migration across brain microvascular endothelial cell monolayers Exp. Hematol., 38 (2010),pp. 733-743
    [2] Alhamdoosh, M., Ng, M., Wilson, N.J. et al. Combining multiple tools outperforms individual methods in gene set enrichment analyses Bioinformatics, 33 (2017),pp. 414-424
    [3] Anguille, S., Lion, E., Willemen, Y. et al. Interferon-α in acute myeloid leukemia: an old drug revisited Leukemia, 25 (2011),p. 739
    [4] Atadja, P. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges Cancer Lett., 280 (2009),pp. 233-241
    [5] Barry, W.T., Nobel, A.B., Wright, F.A. Significance analysis of functional categories in gene expression studies: a structured permutation approach Bioinforma. Oxf. Engl., 21 (2005),pp. 1943-1949
    [6] Bayerlová, M., Jung, K., Kramer, F. et al. Comparative study on gene set and pathway topology-based enrichment methods BMC Bioinformatics, 16 (2015),p. 334
    [7] Bernhard, D., Skvortsov, S., Tinhofer, I. et al. Inhibition of histone deacetylase activity enhances Fas receptor-mediated apoptosis in leukemic lymphoblasts Cell Death Differ., 8 (2001),p. 1014
    [8] Bolden, J.E., Peart, M.J., Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors Nat. Rev. Drug Discov., 5 (2006),pp. 769-784
    [9] Buchwald, M., Krämer, O.H., Heinzel, T. HDACi--targets beyond chromatin Cancer Lett., 280 (2009),pp. 160-167
    [10] Chiaretti, S., Li, X., Gentleman, R. et al. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival Blood, 103 (2004),pp. 2771-2778
    [11] Chiron, D., Bekeredjian-Ding, I., Pellat-Deceunynck, C. et al. Toll-like receptors: lessons to learn from normal and malignant human B cells Blood, 112 (2008),pp. 2205-2213
    [12] Croft, D., O'Kelly, G., Wu, G. et al. Reactome: a database of reactions, pathways and biological processes Nucleic Acids Res., 39 (2011),pp. D691-D697
    [13] Desouza, M., Gunning, P.W., Stehn, J.R. The actin cytoskeleton as a sensor and mediator of apoptosis BioArchitecture, 2 (2012),pp. 75-87
    [14] Dong, X., Hao, Y., Wang, X. et al. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights Sci. Rep., 6 (2016)
    [15] Edgar, R., Domrachev, M., Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository Nucleic Acids Res., 30 (2002),pp. 207-210
    [16] Efron, B., Tibshirani, R. On testing the significance of sets of genes Ann. Appl. Stat., 1 (2007),pp. 107-129
    [17] Fang, R., Xiao, T., Fang, Z. et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene J. Biol. Chem., 287 (2012),pp. 23227-23235
    [18] Fang, Z., Tian, W., Ji, H. A network-based gene-weighting approach for pathway analysis Cell Res., 22 (2012),pp. 565-580
    [19] Fogg, P.C.M., O'Neill, J.S., Dobrzycki, T. et al. Class IIa histone deacetylases are conserved regulators of circadian function J. Biol. Chem., 289 (2014),pp. 34341-34348
    [20] Fumarola, C., Bonelli, M.A., Petronini, P.G. et al. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer Biochem. Pharmacol., 90 (2014),pp. 197-207
    [21] Gaarenstroom, T., Hill, C.S. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation Semin. Cell Dev. Biol., 32 (2014),pp. 107-118
    [22] Geistlinger, L., Csaba, G., Zimmer, R. Bioconductor's EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis BMC Bioinformatics, 17 (2016),p. 45
    [23] Glenisson, W., Castronovo, V., Waltregny, D. Histone deacetylase 4 is required for TGFβ1-induced myofibroblastic differentiation Biochim. Biophys. Acta BBA - Mol. Cell Res., 1773 (2007),pp. 1572-1582
    [24] Goeman, J.J., Bühlmann, P. Analyzing gene expression data in terms of gene sets: methodological issues Bioinforma. Oxf. Engl., 23 (2007),pp. 980-987
    [25] Goeman, J.J., van de Geer, S.A., de Kort, F. et al. A global test for groups of genes: testing association with a clinical outcome Bioinforma. Oxf. Engl., 20 (2004),pp. 93-99
    [26] Gu, Z., Wang, J. CePa: an R package for finding significant pathways weighted by multiple network centralities Bioinforma. Oxf. Engl., 29 (2013),pp. 658-660
    [27] Gumy-Pause, F., Wacker, P., Sappino, A.-P. Leukemia, 18 (2004),p. 238
    [28] Hänzelmann, S., Castelo, R., Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data BMC Bioinformatics, 14 (2013),p. 7
    [29] Kanehisa, M., Goto, S. KEGG: kyoto encyclopedia of genes and genomes Nucleic Acids Res., 28 (2000),pp. 27-30
    [30] Kanehisa, M., Goto, S., Furumichi, M. et al. KEGG for representation and analysis of molecular networks involving diseases and drugs Nucleic Acids Res., 38 (2010),pp. D355-D360
    [31] Khatri, P., Sirota, M., Butte, A.J. Ten years of pathway analysis: current approaches and outstanding challenges PLoS Comput. Biol., 8 (2012)
    [32] Law, C.W., Chen, Y., Shi, W. et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts Genome Biol., 15 (2014),p. R29
    [33] Liu, N., He, S., Ma, L. et al. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling PLoS One, 8 (2013)
    [34] Livrea, P., Trojano, M., Simone, I.L. et al. Acute changes in blood-CSF barrier permselectivity to serum proteins after intrathecal methotrexate and CNS irradiation J. Neurol., 231 (1985),pp. 336-339
    [35] Luciano, R.L., Brewster, U.C. Kidney involvement in leukemia and lymphoma Adv. Chron. Kidney Dis., 21 (2014),pp. 27-35
    [36] Luo, W., Friedman, M.S., Shedden, K. et al. GAGE: generally applicable gene set enrichment for pathway analysis BMC Bioinformatics, 10 (2009),p. 161
    [37] Mayerhofer, M., Florian, S., Krauth, M.-T. et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia Cancer Res., 64 (2004),pp. 3148-3154
    [38] Parkinson, H., Kapushesky, M., Shojatalab, M. et al. ArrayExpress--a public database of microarray experiments and gene expression profiles Nucleic Acids Res., 35 (2007),pp. D747-D750
    [39] Patel, N., Krishnan, S., Offman, M.N. et al. A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug l-asparaginase J. Clin. Invest., 119 (2009),pp. 1964-1973
    [40] Pitt, L.A., Tikhonova, A.N., Hu, H. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance Cancer Cell, 27 (2015),pp. 755-768
    [41] Rahmatallah, Y., Emmert-Streib, F., Glazko, G. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline Briefings Bioinf., 17 (2016),pp. 393-407
    [42] Ranganathan, P., Mohamed, R., Jayakumar, C. et al. Guidance cue Netrin-1 and the regulation of inflammation in acute and chronic kidney disease Mediat. Inflamm., 2014 (2014)
    [43] Rasheed, W., Bishton, M., Johnstone, R.W. et al. Histone deacetylase inhibitors in lymphoma and solid malignancies Expert Rev. Anticancer Ther., 8 (2008),pp. 413-432
    [44] Robinson, M.D., McCarthy, D.J., Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics, 26 (2010),pp. 139-140
    [45] Schaefer, C.F., Anthony, K., Krupa, S. et al. PID: the pathway interaction database Nucleic Acids Res., 37 (2009),pp. D674-D679
    [46] Siegel, P.M., Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer Nat. Rev. Cancer, 3 (2003),pp. 807-820
    [47] Smyth, G.K.
    [48] Staal, F.J.T., Langerak, A.W. Signaling pathways involved in the development of T-cell acute lymphoblastic leukemia Haematologica, 93 (2008),pp. 493-497
    [49] Subramanian, A., Tamayo, P., Mootha, V.K. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 15545-15550
    [50] Takahashi, Y., Ikezumi, Y., Saitoh, A. Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes Nephrol. Carlton Vic., 22 (2017),pp. 49-57
    [51] Tarca, A.L., Bhatti, G., Romero, R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity PLoS One, 8 (2013)
    [52] Tarca, A.L., Draghici, S., Bhatti, G. et al. Down-weighting overlapping genes improves gene set analysis BMC Bioinformatics, 13 (2012),p. 136
    [53] The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B. et al. The cancer genome Atlas Pan-cancer analysis project Nat. Genet., 45 (2013),pp. 1113-1120
    [54] Tomfohr, J., Lu, J., Kepler, T.B. Pathway level analysis of gene expression using singular value decomposition BMC Bioinformatics, 6 (2005),p. 225
    [55] Tripathi, S., Emmert-Streib, F. Assessment method for a power analysis to identify differentially expressed pathways PLoS One, 7 (2012)
    [56] Van de Wetering, M., de Lau, W., Clevers, H. WNT signaling and lymphocyte development Cell, 109 (2002),pp. S13-S19
    [57] Visani, G., Martinelli, G., Piccaluga, P. et al. Alpha-interferon improves survival and remission duration in P-190BCR-ABL positive adult acute lymphoblastic leukemia Leukemia, 14 (2000),p. 22
    [58] Wahaib, K., Beggs, A.E., Campbell, H. et al. Panobinostat: a histone deacetylase inhibitor for the treatment of relapsed or refractory multiple myeloma Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm., 73 (2016),pp. 441-450
    [59] Yetgin, S., Olgar, S., Aras, T. et al. Evaluation of kidney damage in patients with acute lymphoblastic leukemia in long-term follow-up: value of renal scan Am. J. Hematol., 77 (2004),pp. 132-139
    [60] Zhang, J.D., Wiemann, S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor Bioinformatics, 25 (2009),pp. 1470-1471
  • 加载中
计量
  • 文章访问数:  186
  • HTML全文浏览量:  91
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-26
  • 录用日期:  2018-08-13
  • 修回日期:  2018-08-11
  • 网络出版日期:  2018-09-13
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回