留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing

Jinyu Wu Ping Yu Xin Jin Xiu Xu Jinchen Li Zhongshan Li Mingbang Wang Tao Wang Xueli Wu Yi Jiang Wanshi Cai Junpu Mei Qingjie Min Qiong Xu Bingrui Zhou Hui Guo Ping Wang Wenhao Zhou Zhengmao Hu Yingrui Li Tao Cai Yi Wang Kun Xia Yong-Hui Jiang Zhong Sheng Sun

Jinyu Wu, Ping Yu, Xin Jin, Xiu Xu, Jinchen Li, Zhongshan Li, Mingbang Wang, Tao Wang, Xueli Wu, Yi Jiang, Wanshi Cai, Junpu Mei, Qingjie Min, Qiong Xu, Bingrui Zhou, Hui Guo, Ping Wang, Wenhao Zhou, Zhengmao Hu, Yingrui Li, Tao Cai, Yi Wang, Kun Xia, Yong-Hui Jiang, Zhong Sheng Sun. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing[J]. Journal of Genetics and Genomics, 2018, 45(10): 527-538. doi: 10.1016/j.jgg.2018.09.002
Citation: Jinyu Wu, Ping Yu, Xin Jin, Xiu Xu, Jinchen Li, Zhongshan Li, Mingbang Wang, Tao Wang, Xueli Wu, Yi Jiang, Wanshi Cai, Junpu Mei, Qingjie Min, Qiong Xu, Bingrui Zhou, Hui Guo, Ping Wang, Wenhao Zhou, Zhengmao Hu, Yingrui Li, Tao Cai, Yi Wang, Kun Xia, Yong-Hui Jiang, Zhong Sheng Sun. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing[J]. Journal of Genetics and Genomics, 2018, 45(10): 527-538. doi: 10.1016/j.jgg.2018.09.002

doi: 10.1016/j.jgg.2018.09.002

Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing

More Information
    • 关键词:
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Abdelmoity, A.T., LePichon, J.B., Nyp, S.S. et al. 15q11.2 proximal imbalances associated with a diverse array of neuropsychiatric disorders and mild dysmorphic features J. Dev. Behav. Pediatr., 33 (2012),pp. 570-576
    [2] Abecasis, G.R., Auton, A., Brooks, L.D. et al. An integrated map of genetic variation from 1,092 human genomes Nature, 491 (2012),pp. 56-65
    [3] Abyzov, A., Urban, A.E., Snyder, M. et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing Genome Res., 21 (2011),pp. 974-984
    [4] Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Methods, 7 (2010),pp. 248-249
    [5] Benadiba, C., Magnani, D., Niquille, M. et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development PLoS Genet., 8 (2012)
    [6] Bernier, R., Golzio, C., Xiong, B. et al. Cell, 158 (2014),pp. 263-276
    [7] Bibonne, A., Neant, I., Batut, J. et al. Biochim. Biophys. Acta, 1833 (2013),pp. 1665-1671
    [8] Bilguvar, K., Ozturk, A.K., Louvi, A. et al. Nature, 467 (2010),pp. 207-210
    [9] Borglum, A.D., Demontis, D., Grove, J. et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci Mol. Psychiatr., 19 (2014),pp. 325-333
    [10] Brandler, W.M., Antaki, D., Gujral, M. et al. Am. J. Hum. Genet., 98 (2016),pp. 667-679
    [11] Busby, V., Goossens, S., Nowotny, P. et al. Alpha-T-catenin is expressed in human brain and interacts with the Wnt signaling pathway but is not responsible for linkage to chromosome 10 in Alzheimer's disease NeuroMolecular Med., 5 (2004),pp. 133-146
    [12] Chiang, D.Y., Getz, G., Jaffe, D.B. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing Nat. Methods, 6 (2009),pp. 99-103
    [13] Christofolini, D.M., Meloni, V.A., Ramos, M.A. et al. Autistic disorder phenotype associated to a complex 15q intrachromosomal rearrangement Am. J. Med. Genet. B Neuropsychiatr. Genet., 159B (2012),pp. 823-828
    [14] Davydov, E.V., Goode, D.L., Sirota, M. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP plus PLoS Comput. Biol., 6 (2010)
    [15] De Rubeis, S., He, X., Goldberg, A.P. et al. Synaptic, transcriptional and chromatin genes disrupted in autism Nature, 515 (2014),pp. 209-215
    [16] Della Monica, M., Lonardo, F., Faravelli, F. et al. Am. J. Med. Genet., 143A (2007),pp. 2733-2737
    [17] Ding, N., Zhou, H., Esteve, P.O. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation Mol. Cell, 31 (2008),pp. 347-359
    [18] Drmanac, R., Sparks, A.B., Callow, M.J. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays Science, 327 (2010),pp. 78-81
    [19] Dufresne, D., Hamdan, F.F., Rosenfeld, J.A. et al. J. Med. Genet., 49 (2012),pp. 451-454
    [20] Ebert, D.H., Greenberg, M.E. Activity-dependent neuronal signalling and autism spectrum disorder Nature, 493 (2013),pp. 327-337
    [21] Feng, J.J., Xu, X., Wang, W.P. et al. Pattern visual evoked potential performance in preterm preschoolers with average intelligence quotients Early Hum. Dev., 87 (2011),pp. 61-66
    [22] Fu, W.Q., O'Connor, T.D., Jun, G. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants Nature, 493 (2013),pp. 216-220
    [23] Fujimori, A., Itoh, K., Goto, S. et al. Disruption of Aspm causes microcephaly with abnormal neuronal differentiation Brain Dev., 36 (2014),pp. 661-669
    [24] Girirajan, S., Dennis, M.Y., Baker, C. et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder Am. J. Hum. Genet., 92 (2013),pp. 221-237
    [25] He, X., Sanders, S.J., Liu, L. et al. PLoS Genet., 9 (2013)
    [26] Iossifov, I., O'Roak, B.J., Sanders, S.J. et al. Nature, 515 (2014),pp. 216-221
    [27] Jiang, Y.H., Yuen, R.K., Jin, X. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing Am. J. Hum. Genet., 93 (2013),pp. 249-263
    [28] Jin, Z.B., Li, Z., Liu, Z. et al. Biol. Rev. Camb. Philos. Soc., 93 (2018),pp. 1014-1031
    [29] Kong, A., Frigge, M.L., Masson, G. et al. Nature, 488 (2012),pp. 471-475
    [30] Krumm, N., O'Roak, B.J., Shendure, J. et al. Trends Neurosci., 37 (2014),pp. 95-105
    [31] Kumar, P., Henikoff, S., Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm Nat. Protoc., 4 (2009),pp. 1073-1082
    [32] Leblond, C.S., Heinrich, J., Delorme, R. et al. PLoS Genet., 8 (2012)
    [33] Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [34] Li, H., Handsaker, B., Wysoker, A. et al. The sequence alignment/map format and SAMtools Bioinformatics, 25 (2009),pp. 2078-2079
    [35] Li, J., Jiang, Y., Wang, T. et al. J. Med. Genet., 52 (2015),pp. 275-281
    [36] Lim, E.T., Raychaudhuri, S., Sanders, S.J. et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders Neuron, 77 (2013),pp. 235-242
    [37] Matson, J.L., Shoemaker, M. Intellectual disability and its relationship to autism spectrum disorders Res. Dev. Disabil., 30 (2009),pp. 1107-1114
    [38] McKenna, A., Hanna, M., Banks, E. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome Res., 20 (2010),pp. 1297-1303
    [39] Michaelson, J.J., Shi, Y., Gujral, M. et al. Cell, 151 (2012),pp. 1431-1442
    [40] Mullins, C., Fishell, G., Tsien, R.W. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops Neuron, 89 (2016),pp. 1131-1156
    [41] O'Roak, B.J., Vives, L., Fu, W. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders Science, 338 (2012),pp. 1619-1622
    [42] Petersen, A.K., Ahmad, A., Shafiq, M. et al. Eur. J. Med. Genet., 56 (2013),pp. 118-122
    [43] RK, Yuen, C., Merico, D., Bookman, M. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder Nat. Neurosci., 20 (2017),pp. 602-611
    [44] Rosti, R.O., Sadek, A.A., Vaux, K.K. et al. The genetic landscape of autism spectrum disorders Dev. Med. Child Neurol., 56 (2014),pp. 12-18
    [45] Saghatelyan, A., de Chevigny, A., Schachner, M. et al. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain Nat. Neurosci., 7 (2004),pp. 347-356
    [46] Schwarz, J.M., Rodelsperger, C., Schuelke, M. et al. MutationTaster evaluates disease-causing potential of sequence alterations Nat. Methods, 7 (2010),pp. 575-576
    [47] Stein, J.L., Parikshak, N.N., Geschwind, D.H. Rare inherited variation in autism: beginning to see the forest and a few trees Neuron, 77 (2013),pp. 209-211
    [48] Steinberg, J., Webber, C. The roles of FMRP-regulated genes in autism spectrum disorder: single- and multiple-hit genetic etiologies Am. J. Hum. Genet., 93 (2013),pp. 825-839
    [49] Stewart, L.R., Hall, A.L., Kang, S.H. et al. High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy BMC Med. Genet., 12 (2011),p. 154
    [50] Tammimies, K., Marshall, C.R., Walker, S. et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder J. Am. Med. Assoc., 314 (2015),pp. 895-903
    [51] Tan, C., Del Gaudio, D., Dempsey, M. et al. Analysis of ASPM in an ethnically diverse cohort of 400 patient samples: perspectives of the molecular diagnostic laboratory Clin. Genet., 85 (2014),pp. 353-358
    [52] Toma, C., Torrico, B., Hervas, A. et al. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations Mol. Psychiatr., 19 (2014),pp. 784-790
    [53] Turner, T.N., Coe, B.P., Dickel, D.E. et al. Cell, 171 (2017),pp. 710-722
    [54] Urraca, N., Cleary, J., Brewer, V. et al. The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature Autism Res., 6 (2013),pp. 268-279
    [55] Vorstman, J.A.S., Parr, J.R., Moreno-De-Luca, D. et al. Autism genetics: opportunities and challenges for clinical translation Nat. Rev. Genet., 18 (2017),pp. 362-376
    [56] Wang, J., Mullighan, C.G., Easton, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution Nat. Methods, 8 (2011),pp. 652-654
    [57] Wang, K., Li, M., Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data Nucleic Acids Res., 38 (2010),p. e164
    [58] Weber, P., Bartsch, U., Rasband, M.N. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS J. Neurosci., 19 (1999),pp. 4245-4262
    [59] Wilfert, A.B., Sulovari, A., Turner, T.N. et al. Genome Med., 9 (2017),p. 101
    [60] Winnepenninckx, B., Debacker, K., Ramsay, J. et al. Am. J. Hum. Genet., 80 (2007),pp. 221-231
    [61] Yang, Y.J., Baltus, A.E., Mathew, R.S. et al. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation Cell, 151 (2012),pp. 1097-1112
    [62] Yin, J., Schaaf, C.P. Autism genetics - an overview Prenat. Diagn., 37 (2017),pp. 14-30
    [63] Yu, T.W., Chahrour, M.H., Coulter, M.E. et al. Using whole-exome sequencing to identify inherited causes of autism Neuron, 77 (2013),pp. 259-273
    [64] Yu, T.W., Mochida, G.H., Tischfield, D.J. et al. Nat. Genet., 42 (2010),pp. 1015-1020
    [65] Yuen, R.K., Merico, D., Cao, H. et al. NPJ Genom. Med., 1 (2016),pp. 160271-1602710
    [66] Yuen, R.K., Thiruvahindrapuram, B., Merico, D. et al. Whole-genome sequencing of quartet families with autism spectrum disorder Nat. Med., 21 (2015),pp. 185-191
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 录用日期:  2018-09-09
  • 修回日期:  2018-08-25
  • 网络出版日期:  2018-10-21
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回