留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Retrospective and perspective of rice breeding in China

Shiwei Bai Hong Yu Bing Wang Jiayang Li

Shiwei Bai, Hong Yu, Bing Wang, Jiayang Li. Retrospective and perspective of rice breeding in China[J]. Journal of Genetics and Genomics, 2018, 45(11): 603-612. doi: 10.1016/j.jgg.2018.10.002
Citation: Shiwei Bai, Hong Yu, Bing Wang, Jiayang Li. Retrospective and perspective of rice breeding in China[J]. Journal of Genetics and Genomics, 2018, 45(11): 603-612. doi: 10.1016/j.jgg.2018.10.002

doi: 10.1016/j.jgg.2018.10.002

Retrospective and perspective of rice breeding in China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ahloowalia, B.S., Maluszynski, M. Induced mutations-A new paradigm in plant breeding Euphytica, 118 (2001),pp. 167-173
    [2] Bai, S., Smith, S.M., Li, J.
    [3] Birchler, J.A. Heterosis: the genetic basis of hybrid vigour Nat. Plants, 1 (2015),p. 15020
    [4] Che, R., Tong, H., Shi, B. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses Nat. Plants, 2 (2015),p. 15195
    [5] Chen, J., Ding, J., Ouyang, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 11436-11441
    [6] Chen, M., Liu, G., Yu, H. et al. Towards molecular design of rice plant architecture and grain quality Chin. Sci. Bull., 63 (2018),pp. 1276-1289
    [7] Chen, S., Yang, Y., Shi, W. et al. Plant Cell, 20 (2008),pp. 1850-1861
    [8] Cheng, S.-H., Zhuang, J.-Y., Fan, Y.-Y. et al. Progress in research and development on hybrid rice: a super-domesticate in China Ann. Bot., 100 (2007),pp. 959-966
    [9] Cheng, S., Liao, X., Min, S. China's super rice research: background, goals and issues China Rice, 1 (1998),pp. 3-5
    [10] Deng, Y., Zhai, K., Xie, Z. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance Science, 355 (2017),pp. 962-965
    [11] Du, B., Zhang, W., Liu, B. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 22163-22168
    [12] Duan, P., Ni, S., Wang, J. et al. Nat. Plants, 2 (2015),p. 15203
    [13] Etsuko, I., Natsuko, I., Sota, F. et al. Plant J., 65 (2011),pp. 359-367
    [14] Falconer, D.S., Mackay, T.F.C.
    [15] Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [16] Fan, C., Yu, S., Wang, C. et al. Theor. Appl. Genet., 118 (2009),pp. 465-472
    [17] Fischer, R.A., Byerlee, D., Edmeades, G. Crop yields and global food security: will yield increase continue to feed the world? Australian Centre for International Agricultural Research, Canberra (2014)
    [18] Fujii, S., Toriyama, K. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 9513-9518
    [19] Gao, Z., Zeng, D., Cheng, F. et al. J. Integr. Plant Biol., 53 (2011),pp. 756-765
    [20] Gao, Z., Zeng, D., Cui, X. et al. Sci. China C Life Sci., 46 (2003),pp. 661-668
    [21] Greene, G.H., Dong, X. To grow and to defend Science, 361 (2018),pp. 976-977
    [22] Guo, J., Xu, C., Wu, D. et al. Nat. Genet., 50 (2018),pp. 297-306
    [23] Guo, J., Xu, X., Li, W. et al. Sci. Rep., 6 (2016),p. 26878
    [24] He, H., Yuan, S. Analyses of plant character in Hubei Photoperiodsensitive Genie Male-sterile Rice (HPGMR) under different light and temperature conditions Hybrid Rice, 5 (1989),pp. 42-44
    [25] Hefferon, K.L. Nutritionally enhanced food crops; progress and perspectives Int. J. Mol. Sci., 16 (2015),pp. 3895-3914
    [26] Hu, B., Wang, W., Ou, S. et al. Nat. Genet., 47 (2015),pp. 834-838
    [27] Hu, H., Dai, M., Yao, J. et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 12987-12992
    [28] Hu, J., Wang, K., Huang, W. et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162 Plant Cell, 24 (2012),pp. 109-122
    [29] Hu, J., Wang, Y., Fang, Y. et al. Mol. Plant, 8 (2015),pp. 1455-1465
    [30] Hu, K., Cao, J., Zhang, J. et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement Nat. Plants, 3 (2017),p. 17009
    [31] Hu, L., Wu, Y., Wu, D. et al. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice Plant Cell, 29 (2017),pp. 3157-3185
    [32] Hu, Z.X., Tian, Y., Xu, Q.S. Review of extension and analysis on current status of hybrid rice in China Hybrid Rice, 31 (2016),pp. 1-8
    [33] Huang, J.-Z., E, Z.-G., Zhang, H.-L. et al. Workable male sterility systems for hybrid rice: genetics, biochemistry, molecular biology, and utilization Rice, 7 (2014),p. 13
    [34] Huang, W., Yu, C., Hu, J. et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 14984-14989
    [35] Huang, X., Yang, S., Gong, J. et al. Genomic architecture of heterosis for yield traits in rice Nature, 537 (2016),pp. 629-633
    [36] Huang, X., Yang, S., Gong, J. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis Nat. Commun., 6 (2015),p. 6258
    [37] Janick, J.
    [38] Jiang, Y., Bao, L., Jeong, S.Y. et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice Plant J., 70 (2012),pp. 398-408
    [39] Jiao, Y., Wang, Y., Xue, D. et al. Nat. Genet., 42 (2010),pp. 541-544
    [40] Jones, J.W. Hybrid vigor in rice J. Am. Soc. Agron., 18 (1926),pp. 423-428
    [41] Kearsey, M.J. The principles of QTL analysis (a minimal mathematics approach) J. Exp. Bot., 49 (1998),pp. 1619-1623
    [42] Khush, G.S., Peng, S.
    [43] Kubo, T., Takashi, T., Ashikari, M. et al. Mol. Plant, 9 (2016),pp. 221-232
    [44] Li, J., Xin, Y., Yuan, L.
    [45] Li, J., Zhang, H., Si, X. et al. J. Genet. Genomics, 44 (2017),pp. 465-468
    [46] Li, Q., Zhang, D., Chen, M. et al. J. Genet. Genomics, 43 (2016),pp. 415-419
    [47] Li, S., Tian, Y., Wu, K. et al. Modulating plant growth–metabolism coordination for sustainable agriculture Nature, 560 (2018),pp. 595-600
    [48] Li, W., Zhu, Z., Chern, M. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance Cell, 170 (2017),pp. 114-126
    [49] Li, X., Zhou, W., Ren, Y. et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing J. Genet. Genomics, 44 (2017),pp. 175-178
    [50] Li, X.-M., Chao, D.-Y., Wu, Y. et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice Nat. Genet., 47 (2015),pp. 827-833
    [51] Li, Y., Fan, C., Xing, Y. et al. Nat. Genet., 43 (2011),pp. 1266-1269
    [52] Li, Y., Fan, C., Xing, Y. et al. Nat. Genet., 46 (2014),pp. 398-404
    [53] Li, Y., Xiao, J., Chen, L. et al. Rice functional genomics research: past decade and future Mol. Plant, 11 (2018),pp. 359-380
    [54] Lin, S.C., Yuan, L.P.
    [55] Liu, C., Ou, S., Mao, B. et al. Nat. Commun., 9 (2018),p. 3302
    [56] Liu, L., Tong, H., Xiao, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 11102-11107
    [57] Liu, Y., Wu, H., Chen, H. et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice Nat. Biotechnol., 33 (2015),pp. 301-305
    [58] Long, Y., Zhao, L., Niu, B. et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 18871-18876
    [59] Lu, Y., Ye, X., Guo, R. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 1242-1245
    [60] Lu, Y., Zhu, J.-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 523-525
    [61] Lu, Z., Yu, H., Xiong, G. et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture Plant Cell, 25 (2013),pp. 3743-3759
    [62] Luo, D., Xu, H., Liu, Z. et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice Nat. Genet., 45 (2013),pp. 573-577
    [63] Luo, J., Liu, H., Zhou, T. et al. Plant Cell, 25 (2013),pp. 3360-3376
    [64] Luo, X., Qiu, Z., Li, R. Pei'ai 64S, a dual purpose sterile line whose sterility is induced by low critical temperature Hybrid Rice, 1 (1992),pp. 27-29
    [65] Ma, G.H.
    [66] Ma, Y., Dai, X., Xu, Y. et al. Cell, 160 (2015),pp. 1209-1221
    [67] Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 19579-19584
    [68] Melchinger, A.E., Gumber, R.K.
    [69] Meng, X., Yu, H., Zhang, Y. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9 Mol. Plant, 10 (2017),pp. 1238-1241
    [70] Miura, K., Ikeda, M., Matsubara, A. et al. Nat. Genet., 42 (2010),pp. 545-549
    [71] Mizuta, Y., Harushima, Y., Kurata, N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 20417-20422
    [72] Peleman, J.D., van der Voort, J.R. Breeding by design Trends Plant Sci., 8 (2003),pp. 330-334
    [73] Peng, B., Kong, H., Li, Y. et al. Nat. Commun., 5 (2014),p. 4847
    [74] Qi, P., Lin, Y.-S., Song, X.-J. et al. Cell Res., 22 (2012),pp. 1666-1680
    [75] Qian, Q., Guo, L., Smith, S.M. et al. Breeding high-yield superior quality hybrid super rice by rational design Natl. Sci. Rev., 3 (2016),pp. 283-294
    [76] Qian, Q., Guo, L., Zeng, D.
    [77] Ren, G.J., Yan, L.A., Xie, H.A. Chin. Sci. Bull., 61 (2016),pp. 3748-3760
    [78] Ren, Z.-H., Gao, J.-P., Li, L.-G. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nat. Genet., 37 (2005),pp. 1141-1146
    [79] Shen, J.H.
    [80] Shi, M. Sci. Agric. Sin., 2 (1985),pp. 44-48
    [81] Shi, M., Deng, J. Acta Genetica Sinica, 13 (1986),pp. 107-112
    [82] Si, H.M., Liu, W.Z., Fu, Y.P. et al. Current situation and suggestions for development of two-line hybrid rice in China Chin. J. Rice Sci., 25 (2011),pp. 544-552
    [83] Si, L., Chen, J., Huang, X. et al. Nat. Genet., 48 (2016),pp. 447-456
    [84] Song, X.-J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
    [85] Song, X., Lu, Z., Yu, H. et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice Cell Res., 27 (2017),pp. 1128-1141
    [86] Song, X.J., Kuroha, T., Ayano, M. et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 76-81
    [87] Sun, H., Qian, Q., Wu, K. et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice Nat. Genet., 46 (2014),pp. 652-656
    [88] Takano-Kai, N., Jiang, H., Kubo, T. et al. Genetics, 182 (2009),pp. 1323-1334
    [89] Tan, Y.F., Li, J.X., Yu, S.B. et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63 Theor. Appl. Genet., 99 (1999),pp. 642-648
    [90] Tang, H., Luo, D., Zhou, D. et al. Mol. Plant, 7 (2014),pp. 1497-1500
    [91] Tang, H., Zheng, X., Li, C. et al. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes Cell Res., 27 (2017),pp. 130-146
    [92] Tian, Z., Qian, Q., Liu, Q. et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 21760-21765
    [93] Toshiyuki, K., Shozo, O., Nobuhiko, M. et al. Plant J., 37 (2004),pp. 315-325
    [94] Wang, B., Smith, S.M., Li, J. Genetic regulation of shoot architecture Annu. Rev. Plant Biol., 69 (2018),pp. 437-468
    [95] Wang, E., Wang, J., Zhu, X. et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication Nat. Genet., 40 (2008),pp. 1370-1374
    [96] Wang, J., Yu, H., Xiong, G. et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice Plant Cell, 29 (2017),pp. 697-707
    [97] Wang, J., Zhou, L., Shi, H. et al. A single transcription factor promotes both yield and immunity in rice Science, 361 (2018),pp. 1026-1028
    [98] Wang, K., Peng, X., Ji, Y. et al. Gene, protein, and network of male sterility in rice Front. Plant Sci., 4 (2013),p. 92
    [99] Wang, Q., Liu, Y., He, J. et al. Nat. Commun., 5 (2014),p. 4768
    [100] Wang, Q., Nian, J., Xie, X. et al. Nat. Commun., 9 (2018),p. 735
    [101] Wang, S., Li, S., Liu, Q. et al. Nat. Genet., 47 (2015),pp. 949-954
    [102] Wang, S., Wu, K., Qian, Q. et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield Cell Res., 27 (2017),pp. 1142-1156
    [103] Wang, S., Wu, K., Yuan, Q. et al. Nat. Genet., 44 (2012),pp. 950-954
    [104] Wang, S.L., Xu, K. Hybrid Rice, 3 (1996),pp. 1-4
    [105] Wang, W., Hu, B., Yuan, D. et al. Plant Cell, 30 (2018),pp. 638-651
    [106] Wang, Y., Xiong, G., Hu, J. et al. Nat. Genet., 47 (2015),pp. 944-948
    [107] Wang, Y., Xue, Y., Li, J. Towards molecular breeding and improvement of rice in China Trends Plant Sci., 10 (2005),pp. 610-614
    [108] Wang, Z., Zou, Y., Li, X. et al. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing Plant Cell, 18 (2006),pp. 676-687
    [109] Wang, Z.Y., Wu, Z.L., Xing, Y.Y. et al. Nucleic Acids Res., 18 (1990),p. 5898
    [110] Wei, X., Xu, J., Guo, H. et al. Plant Physiol., 153 (2010),pp. 1747-1758
    [111] Weng, J., Gu, S., Wan, X. et al. Cell Res., 18 (2008),pp. 1199-1209
    [112] Weng, X., Wang, L., Wang, J. et al. Plant Physiol., 164 (2014),pp. 735-747
    [113] Xie, H., Zheng, J., Zhang, S. Rice breeding for the hybrid combination of Shanyou 63 and its restorer line Minghui 63 Fujian J. Agric. Sci., 2 (1987),pp. 32-38
    [114] Xie, Y., Niu, B., Long, Y. et al. J. Integr. Plant Biol., 59 (2017),pp. 669-679
    [115] Xu, F., Fang, J., Ou, S. et al. Plant Cell Environ., 38 (2015),pp. 800-811
    [116] Xu, R., Yang, Y., Qin, R. et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice J. Genet. Genomics, 43 (2016),pp. 529-532
    [117] Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [118] Yamagata, Y., Yamamoto, E., Aya, K. et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 1494-1499
    [119] Yan, W.-H., Wang, P., Chen, H.-X. et al. Mol. Plant, 4 (2011),pp. 319-330
    [120] Yang, J., Zhao, X., Cheng, K. et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice Science, 337 (2012),pp. 1336-1340
    [121] Yang, S.H., Cheng, B.Y., Shen, W.F. et al. Progress of application and breeding on two-line hybrid rice in China Hybrid Rice, 24 (2009),pp. 5-9
    [122] Yin, K., Gao, C., Qiu, J.-L. Progress and prospects in plant genome editing Nat. Plants, 3 (2017),p. 17107
    [123] Yu, Y., Tang, T., Qian, Q. et al. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication Plant Cell, 20 (2008),pp. 2946-2959
    [124] Yu, Y., Zhao, Z., Shi, Y. et al. Genetics, 203 (2016),pp. 1439-1451
    [125] Yuan, L.P. Chin. Sci. Bull., 4 (1966),p. 322
    [126] Yuan, L.P. The execution and theory of developing hybrid rice Chin. Agric. Sci., 1 (1977),pp. 27-31
    [127] Yuan, L.P., Virmani, S.S.
    [128] Zeng, D., Tian, Z., Rao, Y. et al. Rational design of high-yield and superior-quality rice Nat. Plants, 3 (2017),p. 17031
    [129] Zhang, G., Cheng, Z., Zhang, X. et al. Genome, 54 (2011),pp. 448-459
    [130] Zhang, H., Wang, S. Curr. Opin. Plant Biol., 16 (2013),pp. 188-195
    [131] Zhang, L., Yu, H., Ma, B. et al. Nat. Commun., 8 (2017),p. 14789
    [132] Zhang, X., Wang, J., Huang, J. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 21534-21539
    [133] Zhang, Y., Li, D., Zhang, D. et al. Plant J., 94 (2018),pp. 857-866
    [134] Zhao, D.-S., Li, Q.-F., Zhang, C.-Q. et al. Nat. Commun., 9 (2018),p. 1240
    [135] Zhou, H., Wang, L., Liu, G. et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 12844-12849
    [136] Zhou, Y., Miao, J., Gu, H. et al. Genetics, 201 (2015),pp. 1591-1599
    [137] Zhu, Y. Fifty years of hybrid rice research in China Chin. Sci. Bull., 61 (2016),pp. 3740-3747
  • 加载中
计量
  • 文章访问数:  233
  • HTML全文浏览量:  83
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-31
  • 录用日期:  2018-10-22
  • 修回日期:  2018-10-12
  • 网络出版日期:  2018-11-03
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回