留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants

Jing Pan Fei Zhao Guifang Zhang Yu Pan Lijun Sun Ning Bao Peng Qin Lyuqin Chen Jie Yu Yijing Zhang Lin Xu

Jing Pan, Fei Zhao, Guifang Zhang, Yu Pan, Lijun Sun, Ning Bao, Peng Qin, Lyuqin Chen, Jie Yu, Yijing Zhang, Lin Xu. Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants[J]. Journal of Genetics and Genomics, 2019, 46(3): 133-140. doi: 10.1016/j.jgg.2019.03.001
Citation: Jing Pan, Fei Zhao, Guifang Zhang, Yu Pan, Lijun Sun, Ning Bao, Peng Qin, Lyuqin Chen, Jie Yu, Yijing Zhang, Lin Xu. Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants[J]. Journal of Genetics and Genomics, 2019, 46(3): 133-140. doi: 10.1016/j.jgg.2019.03.001

doi: 10.1016/j.jgg.2019.03.001

Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants

More Information
    Corresponding author: E-mail address: yujie2016@sibs.ac.cn (Jie Yu); E-mail address: zhangyijing@sibs.ac.cn (Yijing Zhang); E-mail address: xulin01@sibs.ac.cn (Lin Xu)
  • Present address: Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305–5453, USA.
    • 关键词:
    •  / 
    •  
    Present address: Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305–5453, USA.
  • [1] Abarca, D., Pizarro, A., Hernandez, I. et al. BMC Plant Biol., 14 (2014),p. 354
    [2] Abu-Abied, M., Szwerdszarf, D., Mordehaev, I. et al. BMC Genomics, 15 (2014),p. 826
    [3] Atkinson, J.A., Rasmussen, A., Traini, R. et al. Branching out in roots: uncovering form, function, and regulation Plant Physiol., 166 (2014),pp. 538-550
    [4] , , de Oliveira Junkes, C.F., de Almeida, M.R., Matsuura, H.N. et al. Front. Plant Sci., 8 (2017),p. 1734
    [5] Bellini, C., Pacurar, D.I., Perrone, I. Adventitious roots and lateral roots: similarities and differences Annu. Rev. Plant Biol., 65 (2014),pp. 639-666
    [6] Birnbaum, K.D. How many ways are there to make a root? Curr. Opin. Plant Biol., 34 (2016),pp. 61-67
    [7] Bolger, A.M., Lohse, M., Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics, 30 (2014),pp. 2114-2120
    [8] Chen, L., Tong, J., Xiao, L. et al. J. Exp. Bot., 67 (2016),pp. 4273-4284
    [9] Chen, X., Qu, Y., Sheng, L. et al. Front. Plant Sci., 5 (2014),p. 208
    [10] Cheng, Y., Dai, X., Zhao, Y. Genes Dev., 20 (2006),pp. 1790-1799
    [11] da Costa, C.T., de Almeida, M.R., Ruedell, C.M. et al. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings Front. Plant Sci., 4 (2013),p. 133
    [12] de Almeida, M.R., de Bastiani, D., Gaeta, M.L. et al. Plant Sci., 239 (2015),pp. 155-165
    [13] De Klerk, G.-J. Rooting of microcuttings: theory and practice. In Vitro Cell Dev. Biol. Plant, 38 (2002),pp. 415-422
    [14] De Klerk, G.-J., Van der Krieken, W., De Jong, J.C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant, 35 (1999),pp. 189-199
    [15] Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
    [16] Falasca, G., Altamura, M.M. Plant Biosyst., 137 (2003),pp. 265-274
    [17] Gamborg, O.L., Miller, R.A., Ojima, K. Nutrient requirements of suspension cultures of soybean root cells Exp. Cell Res., 50 (1968),pp. 151-158
    [18] He, C., Chen, X., Huang, H. et al. PLoS Genet., 8 (2012)
    [19] Hitchcock, A.E., Zimmerman, P.W. Effect of the use of growth substances on the rooting response of cuttings Contrib. Boyce Thompson Inst., 8 (1936),pp. 63-79
    [20] Hornitschek, P., Kohnen, M.V., Lorrain, S. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling Plant J., 71 (2012),pp. 699-711
    [21] Hu, X., Xu, L. Plant Physiol., 172 (2016),pp. 2363-2373
    [22] Leakey, R.R.B.
    [23] Leng, N., Dawson, J.A., Thomson, J.A. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments Bioinformatics, 29 (2013),pp. 1035-1043
    [24] Li, B., Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome BMC Bioinformatics, 12 (2011),p. 323
    [25] Liu, J., Sheng, L., Xu, Y. et al. Plant Cell, 26 (2014),pp. 1081-1093
    [26] Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plantarum, 80 (1962),pp. 662-668
    [27] Sanchez, M.C., Smith, A.G., Hackett, W.P. Localized expression of a proline-rich protein gene in juvenile and mature ivy petioles in relation to rooting competence Physiol. Plantarum, 93 (1995),pp. 207-216
    [28] Sheng, L., Hu, X., Du, Y. et al. Development, 144 (2017),pp. 3126-3133
    [29] Steffens, B., Rasmussen, A. The physiology of adventitious roots Plant Physiol., 170 (2016),pp. 603-617
    [30] Stepanova, A.N., Robertson-Hoyt, J., Yun, J. et al. Cell, 133 (2008),pp. 177-191
    [31] Sun, B., Chen, L., Liu, J. et al. Sci. Bull., 61 (2016),pp. 1728-1731
    [32] Sun, L.-J., Xie, Y., Yan, Y.-F. et al. Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams Sens. Actuators B Chem., 247 (2017),pp. 336-342
    [33] Sun, L.-J., Zhou, J.-J., Pan, J.-L. et al. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity Sens. Actuators B Chem., 276 (2018),pp. 543-551
    [34] Swamy, S.L., Puri, S., Singh, A.K. New Forest., 23 (2002),pp. 143-157
    [35] Tao, Y., Ferrer, J.L., Ljung, K. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants Cell, 133 (2008),pp. 164-176
    [36] Thimann, K.V., Went, E.W. On the chemical nature of the rootforming hormone Proc. K. Ned. Akad. Wet. Ser. C Biol. Med. Sci., 37 (1934),pp. 456-459
    [37] Verstraeten, I., Schotte, S., Geelen, D. Hypocotyl adventitious root organogenesis differs from lateral root development Front. Plant Sci., 5 (2014),p. 495
    [38] Woo, H.-H., Hackett, W.P., Das, A. Physiol. Plantarum, 92 (1994),pp. 69-78
    [39] Xu, L. Curr. Opin. Plant Biol., 41 (2018),pp. 39-45
    [40] Xu, L., Huang, H. Genetic and epigenetic controls of plant regeneration Curr. Top. Dev. Biol., 108 (2014),pp. 1-33
    [41] Yan, L., Wei, S., Wu, Y. et al. Mol. Plant, 8 (2015),pp. 1820-1823
    [42] Zhao, Y., Christensen, S.K., Fankhauser, C. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis Science, 291 (2001),pp. 306-309
    [43] Zimmerman, W., Wilcoxon, F. Several chemical growth substances which cause initiation of roots and other responses in plants Contrib. Boyce Thompson Inst., 7 (1935),pp. 209-217
  • 加载中
计量
  • 文章访问数:  160
  • HTML全文浏览量:  54
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 录用日期:  2019-03-04
  • 修回日期:  2019-02-13
  • 网络出版日期:  2019-03-05
  • 刊出日期:  2019-03-20

目录

    /

    返回文章
    返回