留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Understanding the importance of autophagy in human diseases using Drosophila

Arindam Bhattacharjee Áron Szabó Tamás Csizmadia Hajnalka Laczkó-Dobos Gábor Juhász

Arindam Bhattacharjee, Áron Szabó, Tamás Csizmadia, Hajnalka Laczkó-Dobos, Gábor Juhász. Understanding the importance of autophagy in human diseases using Drosophila[J]. Journal of Genetics and Genomics, 2019, 46(4): 157-169. doi: 10.1016/j.jgg.2019.03.007
Citation: Arindam Bhattacharjee, Áron Szabó, Tamás Csizmadia, Hajnalka Laczkó-Dobos, Gábor Juhász. Understanding the importance of autophagy in human diseases using Drosophila[J]. Journal of Genetics and Genomics, 2019, 46(4): 157-169. doi: 10.1016/j.jgg.2019.03.007

doi: 10.1016/j.jgg.2019.03.007

Understanding the importance of autophagy in human diseases using Drosophila

More Information
    Corresponding author: E-mail address: szmrt@elte.hu (Gábor Juhász)
  • These authors contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Abbott, L.A., Natzle, J.E. Mech. Dev., 37 (1992),pp. 43-56
    [2] Agrawal, N., Joshi, S., Kango, M. et al. Dev. Biol., 169 (1995),pp. 387-398
    [3] Ali, S.N., Dayarathna, T.K., Ali, A.N. et al. Dis. Model. Mech. (2018)
    [4] Anderson, C.A., Boucher, G., Lees, C.W. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 Nat. Genet., 43 (2011),pp. 246-252
    [5] Aron, R., Pellegrini, P., Green, E.W. et al. Deubiquitinase usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of huntington's disease Nat. Commun., 9 (2018),p. 3191
    [6] Asano, J., Sato, T., Ichinose, S. et al. Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration Cell Rep., 20 (2017),pp. 1050-1060
    [7] Bardai, F.H., Wang, L., Mutreja, Y. et al. J. Neurosci., 38 (2018),pp. 108-119
    [8] Baxt, L.A., Xavier, R.J. Role of autophagy in the maintenance of intestinal homeostasis Gastroenterology, 149 (2015),pp. 553-562
    [9] Beardsmore, C.S., Godfrey, S., Silverman, M. Forced expiratory flow-volume curves in infants and young children Eur. Respir. J. Suppl., 4 (1989),pp. 154S-159S
    [10] Bhattacharjee, A., Hasanain, M., Kathuria, M. et al. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of akt/mtor and activation of jnk Sci. Rep., 8 (2018),p. 2303
    [11] Bilder, D., Li, M., Perrimon, N. Science, 289 (2000),pp. 113-116
    [12] Bilder, D., Perrimon, N. Localization of apical epithelial determinants by the basolateral pdz protein scribble Nature, 403 (2000),pp. 676-680
    [13] Bilen, J., Bonini, N.M. PLoS Genet., 3 (2007),pp. 1950-1964
    [14] Billes, V., Kovacs, T., Hotzi, B. et al. J. Huntingtons Dis., 5 (2016),pp. 133-147
    [15] Boland, B., Kumar, A., Lee, S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in alzheimer's disease J. Neurosci., 28 (2008),pp. 6926-6937
    [16] Boya, P., Codogno, P., Rodriguez-Muela, N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming Development, 145 (2018)
    [17] Brumby, A.M., Richardson, H.E. EMBO J., 22 (2003),pp. 5769-5779
    [18] Buchon, N., Silverman, N., Cherry, S. Nat. Rev. Immunol., 14 (2014),pp. 796-810
    [19] Butterworth, F.M., Forrest, E.C. Tissue Cell, 16 (1984),pp. 237-250
    [20] Buttner, S., Broeskamp, F., Sommer, C. et al. Spermidine protects against alpha-synuclein neurotoxicity Cell Cycle, 13 (2014),pp. 3903-3908
    [21] Carra, S., Boncoraglio, A., Kanon, B. et al. J. Biol. Chem., 285 (2010),pp. 37811-37822
    [22] Chang, S., Bray, S.M., Li, Z. et al. Nat. Chem. Biol., 4 (2008),pp. 256-263
    [23] Chen, X., He, Y., Lu, F. Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation Stem Cells Int., 2018 (2018),p. 9131397
    [24] Chu, C.T. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases Neurobiol. Dis., 122 (2019),pp. 23-34
    [25] Cornelissen, T., Vilain, S., Vints, K. et al. eLife, 7 (2018)
    [26] Cuervo, A.M., Stefanis, L., Fredenburg, R. et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy Science, 305 (2004),pp. 1292-1295
    [27] Cuervo, A.M., Wong, E. Chaperone-mediated autophagy: roles in disease and aging Cell Res., 24 (2014),pp. 92-104
    [28] Csizmadia, T., Lorincz, P., Hegedus, K. et al. J. Cell Biol., 217 (2018),pp. 361-374
    [29] de Castro, I.P., Costa, A.C., Celardo, I. et al. Cell Death Dis., 4 (2013),p. e873
    [30] del Cano-Espinel, M., Acebes, J.R., Sanchez, D. et al. Lazarillo-related lipocalins confer long-term protection against type i spinocerebellar ataxia degeneration contributing to optimize selective autophagy Mol. Neurodegener, 10 (2015),p. 11
    [31] Drew, L. An age-old story of dementia Nature, 559 (2018),pp. S2-S3
    [32] Enomoto, M., Vaughen, J., Igaki, T. Non-autonomous overgrowth by oncogenic niche cells: cellular cooperation and competition in tumorigenesis Cancer Sci., 106 (2015),pp. 1651-1658
    [33] Feany, M.B., Bender, W.W. Nature, 404 (2000),pp. 394-398
    [34] Ferres-Marco, D., Gutierrez-Garcia, I., Vallejo, D.M. et al. Epigenetic silencers and notch collaborate to promote malignant tumours by rb silencing Nature, 439 (2006),pp. 430-436
    [35] Fujikake, N., Shin, M., Shimizu, S. Association between autophagy and neurodegenerative diseases Front. Neurosci., 12 (2018),p. 255
    [36] Fujita, N., Huang, W., Lin, T.H. et al. eLife, 6 (2017)
    [37] Galluzzi, L., Bravo-San Pedro, J.M., Levine, B. et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles Nat. Rev. Drug Discov., 16 (2017),pp. 487-511
    [38] Gispert, S., Ricciardi, F., Kurz, A. et al. Parkinson phenotype in aged pink1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration PLoS One, 4 (2009),p. e5777
    [39] Grasso, D., Garcia, M.N., Iovanna, J.L. Autophagy in pancreatic cancer Int. J. Cell Biol., 2012 (2012),p. 760498
    [40] Guan, J.L., Simon, A.K., Prescott, M. et al. Autophagy in stem cells Autophagy, 9 (2013),pp. 830-849
    [41] Hampe, J., Franke, A., Rosenstiel, P. et al. A genome-wide association scan of nonsynonymous snps identifies a susceptibility variant for crohn disease in atg16l1 Nat. Genet., 39 (2007),pp. 207-211
    [42] Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
    [43] Hara, T., Nakamura, K., Matsui, M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature, 441 (2006),pp. 885-889
    [44] Harris, R.E., Pargett, M., Sutcliffe, C. et al. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling Dev. Cell, 20 (2011),pp. 72-83
    [45] Hegedus, K., Takats, S., Boda, A. et al. The ccz1-Mon1-rab7 module and rab 5 control distinct steps of autophagy Mol. Biol. Cell, 27 (2016),pp. 3132-3142
    [46] Huttenhower, C., Kostic, A.D., Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome Immunity, 40 (2014),pp. 843-854
    [47] Issa, A.R., Sun, J., Petitgas, C. et al. Autophagy, 14 (2018),pp. 1898-1910
    [48] Jain, A., Rusten, T.E., Katheder, N. et al. J. Biol. Chem., 290 (2015),pp. 14945-14962
    [49] Jiang, H., Edgar, B.A. Curr. Opin. Genet. Dev., 22 (2012),pp. 354-360
    [50] Jie, X.X., Zhang, X.Y., Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications Oncotarget, 8 (2017),pp. 81558-81571
    [51] Jin, Z., Kirilly, D., Weng, C. et al. Cell Stem Cell, 2 (2008),pp. 39-49
    [52] Johansen, T., Lamark, T. Selective autophagy mediated by autophagic adapter proteins Autophagy, 7 (2011),pp. 279-296
    [53] Juhasz, G., Erdi, B., Sass, M. et al. Genes Dev., 21 (2007),pp. 3061-3066
    [54] Katheder, N.S., Khezri, R., O'Farrell, F. et al. Microenvironmental autophagy promotes tumour growth Nature, 541 (2017),pp. 417-420
    [55] Kim, M., Ho, A., Lee, J.H. Autophagy and human neurodegenerative diseases-a fly's perspective Int. J. Mol. Sci., 18 (2017)
    [56] Kim, M., Park, H.L., Park, H.W. et al. Autophagy, 9 (2013),pp. 1201-1213
    [57] Kim, M., Sandford, E., Gatica, D. et al. eLife, 5 (2016)
    [58] Klionsky, D.J., Cregg, J.M., , Emr, S.D. et al. A unified nomenclature for yeast autophagy-related genes Dev. Cell, 5 (2003),pp. 539-545
    [59] Komatsu, M., Waguri, S., Chiba, T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice Nature, 441 (2006),pp. 880-884
    [60] Komatsu, M., Wang, Q.J., Holstein, G.R. et al. Essential role for autophagy protein atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 14489-14494
    [61] Korzelius, J., Naumann, S.K., Loza-Coll, M.A. et al. EMBO J., 33 (2014),pp. 2967-2982
    [62] Kriegenburg, F., Ungermann, C., Reggiori, F. Coordination of autophagosome-lysosome fusion by atg8 family members Curr. Biol., 28 (2018),pp. R512-R518
    [63] Lavoie, C.A., Ohlstein, B., McKearin, D.M. Localization and function of bam protein require the benign gonial cell neoplasm gene product Dev. Biol., 212 (1999),pp. 405-413
    [64] Lee, J.J., Sanchez-Martinez, A., Zarate, A.M. et al. J. Cell Biol., 217 (2018),pp. 1613-1622
    [65] Li, H., Jasper, H. Gastrointestinal stem cells in health and disease: from flies to humans Dis. Model Mech., 9 (2016),pp. 487-499
    [66] Li, H., Ruberu, K., Munoz, S.S. et al. Apolipoprotein d modulates amyloid pathology in app/ps1 alzheimer's disease mice Neurobiol. Aging, 36 (2015),pp. 1820-1833
    [67] Ling, D., Salvaterra, P.M. Acta Neuropathol., 121 (2011),pp. 183-191
    [68] Ling, D., Song, H.J., Garza, D. et al. PLoS One, 4 (2009),p. e4201
    [69] Liu, M., Lim, T.M., Cai, Y. Sci. Signal., 3 (2010),p. ra57
    [70] Liu, Y., Gordesky-Gold, B., Leney-Greene, M. et al. Cell Host Microbe, 24 (2018)
    [71] Lorincz, P., Mauvezin, C., Juhasz, G. Cells, 6 (2017),p. 22
    [72] Lorincz, P., Toth, S., Benko, P. et al. Rab2 promotes autophagic and endocytic lysosomal degradation J. Cell Biol., 216 (2017),pp. 1937-1947
    [73] Man, S.M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis Nat. Rev. Gastroenterol. Hepatol., 15 (2018),pp. 721-737
    [74] Manent, J., Banerjee, S., de Matos Simoes, R. et al. Autophagy suppresses ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species Oncogene, 36 (2017),pp. 5576-5592
    [75] Markstein, M., Dettorre, S., Cho, J. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 4530-4535
    [76] Mathew, R., Karantza-Wadsworth, V., White, E. Role of autophagy in cancer Nat. Rev. Cancer, 7 (2007),pp. 961-967
    [77] Mauvezin, C., Ayala, C., Braden, C.R. et al. Methods, 68 (2014),pp. 134-139
    [78] McGovern, D.P., Kugathasan, S., Cho, J.H. Genetics of inflammatory bowel diseases Gastroenterology, 149 (2015)
    [79] McKearin, D., Ohlstein, B. A role for the drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells Development, 121 (1995),pp. 2937-2947
    [80] Mizushima, N., Levine, B. Autophagy in mammalian development and differentiation Nat. Cell Biol., 12 (2010),pp. 823-830
    [81] Moretti, J., Roy, S., Bozec, D. et al. Sting senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum Cell, 171 (2017),pp. 809-823. e813
    [82] Mowers, E.E., Sharifi, M.N., Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis FEBS J., 285 (2018),pp. 1751-1766
    [83] Mukherjee, A., Patel, B., Koga, H. et al. Autophagy, 12 (2016),pp. 1984-1999
    [84] Mulakkal, N.C., Nagy, P., Takats, S. et al. BioMed Res. Int., 2014 (2014),p. 273473
    [85] Murthy, A., Li, Y., Peng, I. et al. Nature, 506 (2014),pp. 456-462
    [86] Nagy, P., Kovacs, L., Sandor, G.O. et al. Dis. Model Mech., 9 (2016),pp. 501-512
    [87] Nagy, P., Sandor, G.O., Juhasz, G. Sci. Rep., 8 (2018),p. 4644
    [88] Nagy, P., Szatmari, Z., Sandor, G.O. et al. Development, 144 (2017),pp. 3990-4001
    [89] Nagy, P., Varga, A., Kovacs, A.L. et al. Methods, 75 (2015),pp. 151-161
    [90] Nagy, P., Varga, A., Pircs, K. et al. PLoS Genet., 9 (2013),p. e1003664
    [91] Nakamoto, M., Moy, R.H., Xu, J. et al. Immunity, 36 (2012),pp. 658-667
    [92] Napoletano, F., Occhi, S., Calamita, P. et al. EMBO J., 30 (2011),pp. 945-958
    [93] Nezis, I.P., Simonsen, A., Sagona, A.P. et al. J. Cell Biol., 180 (2008),pp. 1065-1071
    [94] Nisoli, I., Chauvin, J.P., Napoletano, F. et al. Neurodegeneration by polyglutamine atrophin is not rescued by induction of autophagy Cell Death Differ., 17 (2010),pp. 1577-1587
    [95] O'Farrell, F., Lobert, V.H., Sneeggen, M. et al. Class iii phosphatidylinositol-3-oh kinase controls epithelial integrity through endosomal lkb1 regulation Nat. Cell Biol., 19 (2017),pp. 1412-1423
    [96] Ochaba, J., Lukacsovich, T., Csikos, G. et al. Potential function for the huntingtin protein as a scaffold for selective autophagy Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 16889-16894
    [97] Palandri, A., Martin, E., Russi, M. et al. Dis. Model Mech., 11 (2018)
    [98] Palikaras, K., Lionaki, E., Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology Nat. Cell Biol., 20 (2018),pp. 1013-1022
    [99] Pandey, U.B., Nie, Z., Batlevi, Y. et al. Hdac6 rescues neurodegeneration and provides an essential link between autophagy and the ups Nature, 447 (2007),pp. 859-863
    [100] Papp, D., Kovacs, T., Billes, V. et al. Auten-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects Autophagy, 12 (2016),pp. 273-286
    [101] Perez, E., Das, G., Bergmann, A. et al. Autophagy regulates tissue overgrowth in a context-dependent manner Oncogene, 34 (2015),pp. 3369-3376
    [102] Perez, F.A., Palmiter, R.D. Parkin-deficient mice are not a robust model of parkinsonism Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 2174-2179
    [103] Perrimon, N. Dev. Biol., 127 (1988),pp. 392-407
    [104] Pircs, K., Nagy, P., Varga, A. et al. PLoS One, 7 (2012)
    [105] Poon, C.L.C., Brumby, A.M., Richardson, H.E. Int. J. Mol. Sci., 19 (2018)
    [106] Qian, M., Fang, X., Wang, X. Autophagy and inflammation Clin. Transl. Med., 6 (2017),p. 24
    [107] Ravikumar, B., Vacher, C., Berger, Z. et al. Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of huntington disease Nat. Genet., 36 (2004),pp. 585-595
    [108] Ray, A., Speese, S.D., Logan, M.A. J. Neurosci., 37 (2017),pp. 11881-11893
    [109] Reiter, L.T., Potocki, L., Chien, S. et al. Genome Res., 11 (2001),pp. 1114-1125
    [110] Revuelta, M., Matheu, A. Autophagy in stem cell aging Aging Cell, 16 (2017),pp. 912-915
    [111] Richardson, H.E., Portela, M. BioMed Res. Int., 2018 (2018),p. 4258387
    [112] Rodolfo, C., Di Bartolomeo, S., Cecconi, F. Autophagy in stem and progenitor cells Cell. Mol. Life Sci., 73 (2016),pp. 475-496
    [113] Rousseaux, M.W.C., Vazquez-Velez, G.E., Al-Ramahi, I. et al. A druggable genome screen identifies modifiers of alpha-synuclein levels via a tiered cross-species validation approach J. Neurosci., 38 (2018),pp. 9286-9301
    [114] Rui, Y.N., Xu, Z., Patel, B. et al. Huntingtin functions as a scaffold for selective macroautophagy Nat. Cell Biol., 17 (2015),pp. 262-275
    [115] Rusten, T.E., Vaccari, T., Lindmo, K. et al. Escrts and fab 1 regulate distinct steps of autophagy Curr. Biol., 17 (2007),pp. 1817-1825
    [116] Saitoh, Y., Fujikake, N., Okamoto, Y. et al. P62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies J. Biol. Chem., 290 (2015),pp. 1442-1453
    [117] Sansone, C.L., Cohen, J., Yasunaga, A. et al. Cell Host Microbe, 18 (2015),pp. 571-581
    [118] Sarkar, S., Krishna, G., Imarisio, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin Hum. Mol. Genet., 17 (2008),pp. 170-178
    [119] Seguin, A., Monnier, V., Palandri, A. et al. Oxid. Med. Cell Longev., 2015 (2015),p. 565140
    [120] Senturk, M., Bellen, H.J. Genetic strategies to tackle neurological diseases in fruit flies Curr. Opin. Neurobiol., 50 (2018),pp. 24-32
    [121] Seong, E., Insolera, R., Dulovic, M. et al. Mutations in vps13d lead to a new recessive ataxia with spasticity and mitochondrial defects Ann. Neurol., 83 (2018),pp. 1075-1088
    [122] Sharif, T., Martell, E., Dai, C. et al. Autophagic homeostasis is required for the pluripotency of cancer stem cells Autophagy, 13 (2017),pp. 264-284
    [123] Shen, R., Weng, C., Yu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 11623-11628
    [124] Simonsen, A., Cumming, R.C., Brech, A. et al. Autophagy, 4 (2008),pp. 176-184
    [125] Sinka, R., Gillingham, A.K., Kondylis, V. et al. Golgi coiled-coil proteins contain multiple binding sites for rab family g proteins J. Cell Biol., 183 (2008),pp. 607-615
    [126] Sonoshita, M., Cagan, R.L. Curr. Top. Dev. Biol., 121 (2017),pp. 287-309
    [127] Stoker, T.B., Torsney, K.M., Barker, R.A. Emerging treatment approaches for Parkinson's disease Front. Neurosci., 12 (2018),p. 693
    [128] Stoyas, C.A., La Spada, A.R. The cag-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology Handb. Clin. Neurol., 147 (2018),pp. 143-170
    [129] Strange, K. Drug discovery in fish, flies, and worms ILAR J., 57 (2016),pp. 133-143
    [130] Sui, X., Kong, N., Ye, L. et al. P38 and jnk mapk pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents Cancer Lett., 344 (2014),pp. 174-179
    [131] Takats, S., Glatz, G., Szenci, G. et al. Non-canonical role of the snare protein ykt6 in autophagosome-lysosome fusion PLoS Genet., 14 (2018),p. e1007359
    [132] Takats, S., Nagy, P., Varga, A. et al. J. Cell Biol., 201 (2013),pp. 531-539
    [133] Takats, S., Pircs, K., Nagy, P. et al. Mol. Biol. Cell, 25 (2014),pp. 1338-1354
    [134] Takeuchi, T., Nagai, Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases Brain Sci., 7 (2017)
    [135] Tekirdag, K., Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone J. Biol. Chem., 293 (2018),pp. 5414-5424
    [136] Thachil, E., Hugot, J.P., Arbeille, B. et al. Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with crohn's disease Gastroenterology, 142 (2012),pp. 1097-1099.e4
    [137] Uhlirova, M., Bohmann, D. EMBO J., 25 (2006),pp. 5294-5304
    [138] Underwood, B.R., Imarisio, S., Fleming, A. et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease Hum. Mol. Genet., 19 (2010),pp. 3413-3429
    [139] Uytterhoeven, V., Lauwers, E., Maes, I. et al. Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy Neuron, 88 (2015),pp. 735-748
    [140] Varga, K., Nagy, P., Arsikin Csordas, K. et al. Sci. Rep., 6 (2016),p. 34641
    [141] Venkatachalam, K., Long, A.A., Elsaesser, R. et al. Cell, 135 (2008),pp. 838-851
    [142] Von, G. Z. Zellforsch. Mikrosk. Anat., 61 (1963),pp. 56-95
    [143] Wang, L., Hagemann, T.L., Messing, A. et al. J. Neurosci., 36 (2016),pp. 1445-1455
    [144] Wang, T., Lao, U., Edgar, B.A. J. Cell Biol., 186 (2009),pp. 703-711
    [145] Wang, Y.C., Lee, C.M., Lee, L.C. et al. Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (sca12) J. Biol. Chem., 286 (2011),pp. 21742-21754
    [146] Xie, T., Spradling, A.C. Science, 290 (2000),pp. 328-330
    [147] Yang, Z., Goronzy, J.J., Weyand, C.M. Autophagy in autoimmune disease J. Mol. Med. (Berl.), 93 (2015),pp. 707-717
    [148] Yoon, W.H., Sandoval, H., Nagarkar-Jaiswal, S. et al. Loss of nardilysin, a mitochondrial co-chaperone for alpha-ketoglutarate dehydrogenase, promotes mtorc1 activation and neurodegeneration Neuron, 93 (2017),pp. 115-131
    [149] Zhang, Y.Z., Li, Y.Y. Inflammatory bowel disease: pathogenesis World J. Gastroenterol., 20 (2014),pp. 91-99
    [150] Zhao, S., Fortier, T.M., Baehrecke, E.H. Autophagy promotes tumor-like stem cell niche occupancy Curr. Biol., 28 (2018),pp. 3056-3064
    [151] Zhu, J.H., Guo, F., Shelburne, J. et al. Localization of phosphorylated erk/map kinases to mitochondria and autophagosomes in lewy body diseases Brain Pathol., 13 (2003),pp. 473-481
  • 加载中
计量
  • 文章访问数:  202
  • HTML全文浏览量:  72
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-20
  • 录用日期:  2019-03-06
  • 修回日期:  2019-03-05
  • 网络出版日期:  2019-04-23
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回