留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-cell RNA sequencing identifies novel cell types in Drosophila blood

Yulong Fu Xiaohu Huang Peng Zhang Joyce van de Leemput Zhe Han

Yulong Fu, Xiaohu Huang, Peng Zhang, Joyce van de Leemput, Zhe Han. Single-cell RNA sequencing identifies novel cell types in Drosophila blood[J]. Journal of Genetics and Genomics, 2020, 47(4): 175-186. doi: 10.1016/j.jgg.2020.02.004
Citation: Yulong Fu, Xiaohu Huang, Peng Zhang, Joyce van de Leemput, Zhe Han. Single-cell RNA sequencing identifies novel cell types in Drosophila blood[J]. Journal of Genetics and Genomics, 2020, 47(4): 175-186. doi: 10.1016/j.jgg.2020.02.004

doi: 10.1016/j.jgg.2020.02.004

Single-cell RNA sequencing identifies novel cell types in Drosophila blood

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally.
  • Fig.  1.  Cell diversity in Drosophila blood cells delineated by single-cell transcriptomic analysis. A: Schematic representation of scRNA-seq workflow of blood cells from L3 stage larvae by 10× Chromium platform (10× Genomics, CA, USA). B: tSNE feature plot representing Drosophila blood scRNA-seq data (left). Panel (right) shows cell numbers and percentage of cells/total for each tSNE cluster. C: Violin plots show expression of indicated genes across the different tSNE cell clusters: srp (pan-hemocyte) and representative marker genes for each of the five hemocyte clusters. X-axis: log scale normalized read count. Y-axis: PM, plasmatocytes; CC, crystal cells; LM, lamellocytes; TH, thanacytes; PR, primocytes.

    Fig.  2.  Characterization of plasmatocyte subtypes: Ppn+ PM, CAH7+ PM, Lsp+ PM and reservoir PM. A: tSNE plot of the plasmatocyte subtypes visualized by Seurat (R package). B: Heatmap representing the differentially expressed genes for each of the plasmatocyte subtypes. C: Feature plots showing the expression of marker genes specific to the Ppn+ PM, CAH7+ PM, Lsp+ PM and reservoir PM cell subtypes. D: Single-cell trajectory for the four subtypes of plasmatocytes, reconstructed using Monocle. EH: GO pathway analysis using the genes most differentially expressed in the Ppn+ PM (E), CAH7+ PM (F), Lsp+ PM (G) and reservoir PM (H) subtypes. PM, plasmatocyte.

    Fig.  3.  Labeling of Ppn+ and CAH7+ plasmatocytes by differentially expressed markers. A: Violin plot showing Ppn expression in plasmatocyte subclusters. Y-axis: log scale normalized read count. X-axis: 1: Ppn+ PM; 2: CAH7+ PM; 3: Lsp+ PM; 4: reservoir PM. B: Representing Apotome image of Ppn expression (green) in blood cells from Drosophila mCD8-GFP driven by Ppn-Gal4. Nuclear counterstain with DAPI (blue). Scale bar: 20 μm. C and E: Feature plots representing expression (level and distribution) in plasmatocytes for EcR (C) and ena (E). D and F: Representing Apotome images of EcR (D; red) and Ena (F; red) protein expression in Drosophila blood cells, by immunofluorescence. Nuclear counterstain with DAPI (blue). Scale bars: 20 μm.

    Fig.  4.  Identification of two novel cell types in Drosophila blood: thanacytes and primocytes. A: Feature plot representing beat-IIb gene expression in hemocytes (scRNA-seq data). Primocyte cell cluster is bounded in blue dashed line. B: Violin plots showing the expression for beat-IIb, Z600 and Fas1 genes in Drosophila blood scRNA-seq data. C: Feature plot representing Ance-2 gene expression in hemocytes (scRNA-seq data). Thanacyte cell cluster is bounded in blue dashed line. D: Violin plots for Ance-2, CG15506 and CG1648 expression in Drosophila blood scRNA-seq data. X-axis: PM, plasmatocytes; CC, crystal cells; LM, lamellocytes; TH, thanacytes; PR, primocytes. Y-axis: log scale normalized read count.E and F: GO pathway analysis of differentially expressed genes for primocyte (E) and thanacyte (F) cell clusters. Differentially expressed genes are shown in black, and enriched GO pathways are shown in green.

    Fig.  5.  Labeling of thanacytes in Drosophila blood. A, B and E: tSNE feature plots of Drosophila blood scRNA-seq data. Thanacyte cell cluster is bounded by blue dashed line. A: tSNE plot representing expression of Ance. B: tSNE plot representing expression of NimC1. E: tSNE plot representing expression of Tep4. C, D, F and G: Fluorescent images captured by Apotome microscopy. Scale bars: 20 μm. C: Ance protein expression (GFP; green) in Drosophila blood cells from Ance-GFP fly line. D: Ance protein expression (red) detected by antibody in Drosophila blood cells. F: Expression of Tep4 (green) in blood cells from a Drosophila Tep4-Gal4-driven UAS-mCD8-GFP line. G: NimC1 (P1), plasmatocyte marker, protein expression (red), and expression of Tep4 (green) in blood cells from Tep4-Gal4>UAS-mCD8-GFPDrosophila line. PM indicates a GFP negative, NimC1 positive plasmatocyte, and TH indicates a GFP positive, NimC1 negative thanacyte.

    Fig.  6.  Silencing of Tep4 expression in thanacytes led to distinct responses to different types of bacteria. A and B: Survival plots for control flies (w, circle) and Tep4-IR flies (Tep4-Gal4>Tep4-IR, square) after intrathoracic injection with different types of bacteria. Whereas there is no difference observed between these two groups when injecting Escherichia coli (E. coli), Photorhabdus luminescens (P. luminsescens), Micrococcus luteus (M. luteus), or Staphylococcus aureus (S. aureus), injection of Photorhabdus asymbiotica (P. asymbiotica) (A) or Listeria monocytogenes (L. monocytogenes) (B) showed significant different survival curves. ∗, P-value < 0.05. Graphs depict survival of 40 flies per experimental group, monitored for 60 h at 12-h intervals.

    Fig.  7.  Functional conservation between Drosophila and human blood cells. A: Summary of expression of Drosophila genes and their human homologs. BD: tSNE feature plots of Drosophila blood scRNA-seq data. EG: tSNE feature plots of human blood scRNA-seq data (peripheral blood mononuclear cells (Zheng et al., 2017)). B and E: Representing expression of Aldh (B), with fly plasmatocyte cluster bounded by dashed blue line, and its human homolog ALDH2 (E), with CD14+ monocytes (CD14+ mono) and dendritic cells (DC) clusters indicated. C, D, F and G: Representing expression of CG30088 (C) and CG30090 (D), with fly thanacytes cluster bounded by dashed blue line, and their human homologs GZMB (F) and GZMH (G), respectively, with natural killer cell and CD8+ (cytotoxic) T cell clusters indicated.

  • [1] Anderl, I., Vesala, L., Ihalainen, T.O., Vanha-Aho, L.M., Ando, I., Ramet, M., Hultmark, D., 2016. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS pathog. 12, e1005746.
    [2] Artero, R.D., Monferrer, L., Garcia-Lopez, A., Baylies, M.K., 2006. Serpent and a hibris reporter are co-expressed in migrating cells during Drosophila hematopoiesis and Malpighian tubule formation. Hereditas. 143, 117-122.
    [3] Benes, H., Spivey, D.W., Miles, J., Neal, K., Edmondson, R.G., 1990. Fat-body-specific expression of the Drosophila Lsp-2 gene. SAAS Bull Biochem Biotechnol. 3, 129-133.
    [4] Bharadwaj, R., Roy, M., Ohyama, T., Sivan-Loukianova, E., Delannoy, M., Lloyd, T.E., Zlatic, M., Eberl, D.F., Kolodkin, A.L., 2013. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development. 140, 627-638.
    [5] Carter, L.L., Zhang, X., Dubey, C., Rogers, P., Tsui, L., Swain, S.L., 1998. Regulation of T cell subsets from naive to memory. J Immunother. 21, 181-187.
    [6] Cordes, E.J., Licking-Murray, K.D., Carlson, K.A., 2013. Differential gene expression related to Nora virus infection of Drosophila melanogaster. Virus Res. 175, 95-100.
    [7] Dostalova, A., Rommelaere, S., Poidevin, M., Lemaitre, B., 2017. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Bio. 15, 79.
    [8] Doulatov, S., Notta, F., Eppert, K., Nguyen, L.T., Ohashi, P.S., Dick, J.E., 2010. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 11, 585-593.
    [9] Evans, C.J., Hartenstein, V., Banerjee, U., 2003. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell. 5, 673-690.
    [10] Hartenstein, V., Mandal, L., 2006. The blood/vascular system in a phylogenetic perspective. BioEssays. 28, 1203-1210.
    [11] Honti, V., Kurucz, E., Csordas, G., Laurinyecz, B., Markus, R., Ando, I., 2009. In vivo detection of lamellocytes in Drosophila melanogaster. Immunol Lett. 126, 83-84.
    [12] Hurst, D., Rylett, C.M., Isaac, R.E., Shirras, A.D., 2003. The Drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Dev Bio. 254, 238-247.
    [13] Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol. 7, 335-350.
    [14] Jennewein, C., Sowa, R., Faber, A.C., Dildey, M., von Knethen, A., Meybohm, P., Scheller, B., Drose, S., Zacharowski, K., 2015. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation. Am J Resp Cell Mol. 53, 656-663.
    [15] Kawamoto, H., Katsura, Y., 2009. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 30, 193-200.
    [16] Kemp, C., Mueller, S., Goto, A., Barbier, V., Paro, S., Bonnay, F., Dostert, C., Troxler, L., Hetru, C., Meignin, C., Pfeffer, S., Hoffmann, J.A., Imler, J.L., 2013. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol. 190, 650-658.
    [17] Kocks, C., Cho, J.H., Nehme, N., Ulvila, J., Pearson, A.M., Meister, M., Strom, C., Conto, S.L., Hetru, C., Stuart, L.M., Stehle, T., Hoffmann, J.A., Reichhart, J.M., Ferrandon, D., Ramet, M., Ezekowitz, R.A., 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell. 123, 335-346.
    [18] Kulkarni, V., Khadilkar, R.J., Magadi, S.S., Inamdar, M.S., 2011. Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis. PLoS One. 6, e27667.
    [19] Kurucz, E., Markus, R., Zsamboki, J., Folkl-Medzihradszky, K., Darula, Z., Vilmos, P., Udvardy, A., Krausz, I., Lukacsovich, T., Gateff, E., Zettervall, C.J., Hultmark, D., Ando, I., 2007a. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol. CB 17, 649-654.
    [20] Kurucz, E., Vaczi, B., Markus, R., Laurinyecz, B., Vilmos, P., Zsamboki, J., Csorba, K., Gateff, E., Hultmark, D., Ando, I., 2007b. Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol Hung. 58 Suppl, 95-111.
    [21] Makki, R., Meister, M., Pennetier, D., Ubeda, J.M., Braun, A., Daburon, V., Krzemien, J., Bourbon, H.M., Zhou, R., Vincent, A., Crozatier, M., 2010. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol. 8, e1000441.
    [22] Meldrum, N.U., Roughton, F.J., 1933. Carbonic anhydrase. Its preparation and properties. J Physiol. 80, 113-142.
    [23] Nelson, R.E., Fessler, L.I., Takagi, Y., Blumberg, B., Keene, D.R., Olson, P.F., Parker, C.G., Fessler, J.H., 1994. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438-3447.
    [24] Page-McCaw, A., Serano, J., Sante, J.M., Rubin, G.M., 2003. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell. 4, 95-106.
    [25] Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.A., Trapnell, C., 2017. Single-cell mRNA quantification and differential analysis with Census. Nat methods. 14, 309-315.
    [26] Rizki, T.M., Rizki, R.M., 1992. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 16, 103-110.
    [27] Saliba, A.E., Westermann, A.J., Gorski, S.A., Vogel, J., 2014. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860.
    [28] Sedelies, K.A., Sayers, T.J., Edwards, K.M., Chen, W., Pellicci, D.G., Godfrey, D.I., Trapani, J.A., 2004. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem. 279, 26581-26587.
    [29] Shokal, U., Eleftherianos, I., 2017a. The Drosophila Thioester containing Protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus. Dev Comp Immunol. 76, 200-208.
    [30] Shokal, U., Eleftherianos, I., 2017b. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus. J Innate Immun. 9, 83-93.
    [31] Shokal, U., Kopydlowski, H., Harsh, S., Eleftherianos, I., 2018. Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infection and immunity 86.
    [32] Trapani, J.A., 2001. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2, reviews3014.1-reviews3014.7.
    [33] Uttenweiler-Joseph, S., Moniatte, M., Lagueux, M., Van Dorsselaer, A., Hoffmann, J.A., Bulet, P., 1998. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc Natl Acad Sci U S A. 95, 11342-11347.
    [34] Verleyen, P., Baggerman, G., D'Hertog, W., Vierstraete, E., Husson, S.J., Schoofs, L., 2006. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. J Insect Physiol. 52, 379-388.
    [35] Williams, M.J., 2007. Drosophila hemopoiesis and cellular immunity. J Immunol. 178, 4711-4716.
    [36] Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H., 2017. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8, 14049.
  • 加载中
图(7)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  43
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回