-
Abstract: Compartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, △1-pyrroline-5-carboxylate synthase (P5CS). Using the Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.
-
Key words:
- CTPS /
- Cytoophidium /
- Glutamate /
- P5CS /
- Proline
-
Fig. 1. Venus-P5CS forms filamentous structures in Drosophila follicle cells. Transgenic fly was generated with Venus-P5CS. A: Confocal images of Venus-P5CS filaments (green) in follicle cells of a stage 9 egg chamber. DNA was labeled with Hoechst 33342 (blue). Cell membrane was labeled with Hu-li tai shao (red). Scale bar, 20 μm. B: Representative linear or curly P5CS filaments and ring-shaped structures at one end of linear filaments are shown. P5CS, △1-pyrroline-5-carboxylate synthase.
Fig. 2. P5CS forms cytoophidia in multiple tissues. Tissues were derived from offspring of UAS-Venus-P5CS crossed with da-GAL4 lines. DNA was stained with Hoechst 33342 (magenta). A: Wing disc. B: Larval ventral nerve cord. C: Larval midgut. D: Larval salivary gland. E: Adult trachea. F: Adult hindgut. G: Adult accessory gland. H: Adult ejaculatory duct. Scale bars, 10 μm.
Fig. 3. Association of P5CS and CTPS cytoophidia in Drosophila follicle cells. A: Immunostaining results of P5CS and CTPS and the merged picture. The yellow color indicates the overlap bulk of CTPS and P5CS filaments. Scale bar, 10 μm. B: Zoom-in views of some parts of CTPS, P5CS filaments and merged results from A. The green ring-shaped structure suggests that it contains only P5CS filament. Scale bar, 5 μm. C: Fluorescence intensity of the overlapping part of two types of filaments and the ring-shaped structure of P5CS filament was measured. Green, P5CS signal; red, CTPS signal.
Fig. 4. P5CS cytoophidia are anchored on cell cortex. A: Confocal images of P5CS, CTPS filaments and merged results (cell membrane, white). B: The relationship between P5CS, CTPS filaments, and cell membrane. C: Zoom-in view of A. Scale bar, 10 μm. CTPS, CTP synthase; P5CS, △1-pyrroline-5-carboxylate synthase.
Fig. 5. CTPS filamentation affects the morphology of P5CS cytoophidia. A, C and E: Conformational results of CTPS and P5CS filaments and merged images under CTPS cytoophidia wild-type (WT), disruption (SD), and overexpression (OE) levels in follicle cells, respectively. Scale bar, 10 μm. B, D and F: Fluorescence intensity of P5CS and CTPS filaments was measured under different CTPS levels. Green, P5CS signal; red, CTPS signal. G and H: Quantification analysis of length and curvature of P5CS filaments under different CTPS levels. ∗, P < 0.05, ∗∗∗,P < 0.001, Error bars show the SEM. SEM, standard error of mean; CTPS, CTP synthase; P5CS, △1-pyrroline-5-carboxylate synthase.
Fig. 6. Overexpressing P5CS increases the length of CTPS cytoophidia. A, B, D and E: Representative images of CTPS filaments in mCherry control and P5CS overexpression lines. Both UAS-mCherry control and UAS-Venus-P5CS flies were crossed with Actin5c-GAL4 driver. C and F: Zoom-in views of B and E, respectively. Scale bars, 10 μm. G: CTPS cytoophidium areas of mCherry control and P5CS overexpression line were quantified. ∗∗∗∗, P < 0.0001. Error bars show SEM. SEM, standard error of mean; CTPS, CTP synthase; P5CS, △1-pyrroline-5-carboxylate synthase.
Fig. 7. P5CS dimerization interface mutants disrupt filament formation. A: Homology model of P5CS dimer with human P5CS structure as the template and P5CS dimerization interface. Key residues in dimerization interface are labeled, and mutation sites that may have a strong effect on dimerization of P5CS are highlighted in blue (N708 and F713). B: Venus-P5CS, Venus-P5CSN708A, and Venus-P5CSF713A were cloned into pAc 5.1 vector and transfected into S2 cells. Representative confocal images of cells are presented. P5CS signal is shown in green. DNA was labeled with Hoechst 33342 (blue). Scale bar, 10 μm. P5CS, △1-pyrroline-5-carboxylate synthase.
Fig. 8. P5CS forms filamentous structures in vitro. A: Negative stain electron microscopy images of P5CS conformation in apo and substrate-bound states (glutamate, ATP, and NADPH). A magnified filament image is shown in lower panel. B: Quantification analysis of filaments length under different conditions by removing glutamate, ATP, and NADPH successively from the complete reaction. ∗∗, P < 0.01; ns, no significant. Error bars show the SEM.C–F: Two-dimensional classification of two kinds of filaments. G and H: Quantification and comparison between the two types of filaments on their periodicity and diameter. Error bars show the SEM. I: A representative image of filaments under the condition with substrates of CTPS catalytic reaction (glutamine, ATP, UTP, and GTP) and substrates of P5CS catalytic reaction (glutamate, ATP, and NADPH). Two kinds of filaments are indicated by red and black arrows, respectively. SEM, standard error of mean; CTPS, CTP synthase; P5CS, △1-pyrroline-5-carboxylate synthase.
-
[1] An, S., Kumar, R., Sheets, E.D., Benkovic, S.J., 2008. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103-106. [2] Andreadis, C., Hulme, L., Wensley, K., Liu, J.L., 2019. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J. Biol. Chem. 294, 14686–14703. [3] Aughey, G.N., Grice, S.J., Liu, J.L., 2016. The interplay between Myc and CTP synthase in Drosophila. PLoS Genet. 12, e1005867. [4] Aughey, G.N., Grice, S.J., Shen, Q.J., Xu, Y., Chang, C.C., Azzam, G., Wang, P.Y., Freeman-Mills, L., Pai, L.M., Sung, L.Y., Yan, J., Liu, J.L., 2014. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biol. Open 3, 1045–1056. [5] Aughey, G.N., Liu, J.L., 2015. Metabolic regulation via enzyme filamentation. Crit. Rev. Biochem. Mol. Biol. 51, 282–293. [6] Azzam, G., Liu, J.L., 2013. Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet. 9, e1003256. [7] Barry, R.M., Bitbol, A.F., Lorestani, A, Charles, E.J., Habrian, C.H., Hansen, J.M., Li, H.J., Baldwin, E.P., Wingreen, N.S., Kollman, J.M., Gitai, Z., 2014. Large-scale filament formation inhibits the activity of CTP synthetase. Elife 3, e03638. [8] Baumgartner, M.R., Hu, C.-a.A., Almashanu, S., Steel, G., Obie, C., Aral, B., Rabier, D., Kamoun, P., Saudubray, J.-M., Valle, D., 2000. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding Δ1-pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 9, 2853-2858. [9] Baumgartner, M.R., Rabier, D., Nassogne, M.-C., Dufier, J.-L., Padovani, J.-P., Kamoun, P., Valle, D., Saudubray, J.-M., 2005. Δ 1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur. J. Pediatr. 164, 31-36. [10] Bicknell, L.S., Pitt, J., Aftimos, S., Ramadas, R., Maw, M.A., Robertson, S.P., 2008. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur. J. Hum. Genet. 16, 1176-1186. [11] Carcamo, W.C., Satoh, M., Kasahara, H., Terada, N., Hamazaki, T., Chan, J.Y., Yao, B., Tamayo, S., Covini, G., von Muhlen, C.A., Chan, E.K., 2011. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PloS One 6, e29690. [12] Chang, C.C., Jeng, Y.M., Peng, M., Keppeke, G.D., Sung, L.Y., Liu, J.L., 2017. CTP synthase forms the cytoophidium in human hepatocellular carcinoma. Exp. Cell Res. 361, 292–299. [13] Chen, K., Zhang, J., Tastan, O.Y., Deussen, Z.A., Siswick, M.Y., Liu, J.L., 2011. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J. Genet. Genom. 38, 391-402. [14] Daumann, M., Hickl, D., Zimmer, D., DeTar, R.A., Kunz, H.H., Mohlmann, T., 2018. Characterization of filament-forming CTP synthases from Arabidopsis thaliana. Plant J.. 96, 316-328. [15] De Clercq, E., 2001. Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections. Clin. Microbiol. Rev. 14, 382-397. [16] Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., Csonka, L.N., 1998. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol.. 118, 661-674. [17] Gharehbaghi, K., Szekeres, T., Yalowitz, J.A., Fritzer-Szekeres, M., Pommier, Y.G., Jayaram, H.N., 2000. Sensitizing human colon carcinoma HT-29 cells to cisplatin by cyclopentenylcytosine, in vitro and in vivo. Life Sci.. 68, 1-11. [18] Ginzberg, I., Stein, H., Kapulnik, Y., Szabados, L., Strizhov, N., Schell, J., Koncz, C., Zilberstein, A., 1998. Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol. Biol. 38, 755-764. [19] Gou, K.M., Chang, C.C., Shen, Q.J., Sung, L.Y., Liu, J.L., 2014. CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp. Cell Res. 323, 242–253. [20] Hatch, G.M., McClarty, G., 1996. Regulation of cardiolipin biosynthesis in H9c2 cardiac myoblasts by cytidine 5′-triphosphate. J. Bio. Chem. 271, 25810-25816. [21] Higgins, M.J., Graves, P.R., Graves, L.M., 2007. Regulation of human cytidine triphosphate synthetase 1 by glycogen synthase kinase 3. J. Biol. Chem. 282, 29493-29503. [22] Hong, Z., Lakkineni, K., Zhang, Z., Verma, D.P.S., 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol.. 122, 1129-1136. [23] Chien-an, A.H., Williams, D.B., Zhaorigetu, S., Khalil, S., Wan, G., Valle, D., 2008. Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35, 655. [24] Hu, C., Delauney, A.J., Verma, D., 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A. 89, 9354-9358. [25] Hu, C.A., Khalil, S., Zhaorigetu, S., Liu, Z., Tyler, M., Wan, G., Valle, D., 2008. Human Delta1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35, 665-672. [26] Chien-an, A.H., Lin, W.-W., Obie, C., Valle, D., 1999. Molecular Enzymology of Mammalian Δ1-Pyrroline-5-carboxylate synthase alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J. Biol. Chem. 274, 6754-6762. [27] Huang, Y., Wang, J.J., Ghosh, S., Liu, J.L., 2017. Critical roles of CTP synthase N-terminal in cytoophidium assembly. Exp. Cell Res. 354, 122–133. [28] Ingerson-Mahar, M., Briegel, A., Werner, J.N., Jensen, G.J., Gitai, Z., 2010. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12, 739-746. [29] Kim, C.-W., Moon, Y.-A., Park, S.W., Cheng, D., Kwon, H.J., Horton, J.D., 2010. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 107, 9626-9231. [30] Kizaki, H., Williams, J.C., Morris, H.P., Weber, G., 1980. Increased cytidine 5′-triphosphate synthetase activity in rat and human tumors. Canc. Res.. 40, 3921-3927. [31] Li, H., Ye, F., Ren, J.Y., Wang, P.Y., Du, L.L., Liu, J.L., 2018. Active transport of cytoophidia in Schizosaccharomyces pombe. FASEB J. 32, 5891–5898. [32] Lieberman, I., 1956. Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. Biol. Chem. 222, 765-775. [33] Liu, J.-L., 2010. Intracellular compartmentation of CTP synthase in Drosophila. J. Genet. Genom. 37, 281-296. [34] Liu, J.-L., Gall, J.G., 2007. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. U.S.A. 104, 11655-11659. [35] Liu, J.L., 2011. The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation. Bioessays 33, 159-164. [36] Liu, J.L., 2016. The cytoophidium and its kind: filamentation and compartmentation of metabolic enzymes. Annu. Rev. Cell Dev. Biol. 32, 349-372. [37] Long CW, P.A., 1967. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J. Biol. Chem. 242, 4715-4721. [38] Lynch, E.M., Kollman, J.M., 2020. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat. Struct. Mol. Biol. 27, 42–48. [39] Martin, E., Palmic, N., Sanquer, S., Lenoir, C., Hauck, F., Mongellaz, C., Fabrega, S., Nitschke, P., Degli Esposti, M., Schwartzentruber, J., 2014. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature 510, 288. [40] McDonough, V.M., Buxeda, R.J., Bruno, M.E., Ozier-Kalogeropoulos, O., Adeline, M.-T., McMaster, C.R., Bell, R.M., Carman, G.M., 1995. Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by CTP. J. Biol. Chem. 270, 18774-18780. [41] Merrill, M., Yeh, G., Phang, J., 1989. Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH. J. Biol. Chem. 264, 9352-9358. [42] Noree, C., Sato, B.K., Broyer, R.M., Wilhelm, J.E., 2010. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J. Cell Biol. 190, 541-551. [43] Ostrander, D.B., O'Brien, D.J., Gorman, J.A., Carman, G.M., 1998. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 273, 18992-19001. [44] Perez-Arellano, I., Carmona-Alvarez, F., Martinez, A.I., Rodriguez-Diaz, J., Cervera, J., 2010. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci.. 19, 372-382. [45] Rai, A.N., Penna, S., 2013. Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol. Biol. Rep. 40, 6429-6435. [46] Shen, Q.J., Kassim, H., Huang, Y., Li, H., Zhang, J., Li, G., Wang, P.Y., Yan, J., Ye, F., Liu, J.L., 2016. Filamentation of metabolic enzymes in Saccharomyces cerevisiae. J. Genet. Genom. 43, 393-404. [47] Sheth, U., Parker, R., 2006. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095-1109. [48] Smith, R.J., Downing, S.J., Phang, J.M., Lodato, R.F., Aoki, T.T., 1980. Pyrroline-5-carboxylate synthase activity in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 77, 5221-5225. [49] Strochlic, T.I., Stavrides, K.P., Thomas, S.V., Nicolas, E., O’Reilly, A.M., Peterson, J.R., 2014. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep. 15, 1184–1191. [50] Sun, Z., Liu, J.L., 2019. mTOR-S6K1 pathway mediates cytoophidium assembly. J. Genet. Genom. 46, 65–74. [51] Sun, Z., Liu, J.L., 2019. Forming cytoophidia prolongs the half-life of CTP synthase. Cell Discov. 5, 32. [52] Tastan, Ö.Y., Liu, J.L., 2015. Visualizing cytoophidia expression in Drosophila follicle cells via immunohistochemistry. Methods Mol. Biol. 1328, 179–189. [53] Tastan, Ö.Y., Liu, J.L., 2015. CTP synthase is required for optic lobe homeostasis in Drosophila. J. Genet. Genom. 42, 261–274. [54] Van Den Berg, AA., Van Lenthe, H., Busch, S., De Korte, D., Roos, D., Van Kuilenburg, A.B., Van Gennip, A.H., 1993. Evidence for transformation-related increase in CTP synthetase activity in situ in human lymphoblastic leukemia. Eur. J. Biochem. 216, 161-167. [55] Van Den Berg, A., Van Lenthe, H., Kipp, J., De Korte, D., Van Kuilenburg, A., Van Gennip, A., 1995. Cytidine triphosphate (CTP) synthetase activity during cell cycle progression in normal and malignant T-lymphocytic cells. Eur. J. Canc. 31, 108-112. [56] Verschuur, A., Brinkman, J., Van Gennip, A., Leen, R., Vet, R., Evers, L., Voute, P., Van Kuilenburg, A., 2001. Cyclopentenyl cytosine induces apoptosis and increases cytarabine-induced apoptosis in a T-lymphoblastic leukemic cell-line. Leuk. Res. 25, 891-900. [57] Verschuur, A., Van Gennip, A., Leen, R., Muller, E., Elzinga, L., Voute, P., Van Kuilenburg, A., 2000. Cyclopentenyl cytosine inhibits cytidine triphosphate synthetase in paediatric acute non-lymphocytic leukaemia: a promising target for chemotherapy. Eur. J. Canc. 36, 627-635. [58] Verschuur, A., Van Gennip, A., Muller, E., Voute, P., Van Kuilenburg, A., 1998. Increased Activity of Cytidine Triphosphate Synthetase in Pediatric Acute Lymphoblastic Leukemia, Purine and Pyrimidine Metabolism in Man IX. Springer, pp. 667-671. [59] Vogel, H.J., Davis, B.D., 1952. Glutamic γ-semialdehyde and Δ1-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of Proline1, 2. J. Am. Chem. Soc. 74, 109-112. [60] Wang, P.Y., Lin, W.C., Tsai, Y.C., Cheng, M.L., Lin Y.H., Tseng, S.H., Chakraborty, A., Pai, L.M., 2015. Regulation of CTP Synthase Filament Formation During DNA Endoreplication in Drosophila. Genetics 201, 1511–1523. [61] Weber, G., Lui, M.S., Takeda, E., Denton, J.E., 1980. Enxymology of human colon tumors. Life Sci.. 27, 793-799. [62] Williams, J.C., Kizaki, H., Weber, G., Morris, H.P., 1978. Increased CTP synthetase activity in cancer cells. Nature 271, 71-73. [63] Wu, Z., Liu, J.L., 2019. Cytoophidia respond to nutrient stress in Drosophila. Exp. Cell Res. 376, 159–167. [64] Zhang, C.-s., Lu, Q., Verma, D.P.S., 1995. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J. Biol. Chem. 270, 20491-20496. [65] Zhang, J., Hulme, L., Liu, J.L., 2014. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe. Biol. Open 3, 1092-1097. [66] Zhang, J., Liu, J.L., 2019. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. J. Genet. Genom. 46, 423–432. [67] Zhang, S., Ding, K., Shen, Q.J., Zhao, S., Liu, J.L., 2018. Filamentation of asparagine synthetase in Saccharomyces cerevisiae. PLoS Genet. 14, e1007737. [68] Zhou, S., Xiang, H., Liu, J.L., 2020. CTP synthase forms cytoophidia in archaea. J. Genet. Genom. 47. DOI: 10.1016/j.jgg.2020.03.004. [69] Zhou, X., Guo, C.J., Hu, H.H., Zhong, J., Sun, Q., Liu, D., Zhou, S., Chang, C.C., Liu, J.L., 2019. Drosophila CTP synthase can form distinct substrate- and product-bound filaments. J. Genet. Genom. 46, 537–545. -