留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans

Ruofeng Tang Xin Wang Junxiang Zhou Fengxia Zhang Shan Zhao Qiwen Gan Liyuan Zhao Fengyang Wang Qian Zhang Jie Zhang Guodong Wang Chonglin Yang

Ruofeng Tang, Xin Wang, Junxiang Zhou, Fengxia Zhang, Shan Zhao, Qiwen Gan, Liyuan Zhao, Fengyang Wang, Qian Zhang, Jie Zhang, Guodong Wang, Chonglin Yang. Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans[J]. Journal of Genetics and Genomics, 2020, 47(3): 145-156. doi: 10.1016/j.jgg.2020.02.007
Citation: Ruofeng Tang, Xin Wang, Junxiang Zhou, Fengxia Zhang, Shan Zhao, Qiwen Gan, Liyuan Zhao, Fengyang Wang, Qian Zhang, Jie Zhang, Guodong Wang, Chonglin Yang. Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans[J]. Journal of Genetics and Genomics, 2020, 47(3): 145-156. doi: 10.1016/j.jgg.2020.02.007

doi: 10.1016/j.jgg.2020.02.007

Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Fig.  1.  Loss of argn-1 causes abnormal enlargement of mitochondria in C. elegans. A: Representative images of Mito-GFP-labeled structures in the hypodermis of N2, argn-1(yq187), and argn-1(gk315316) animals carrying yqIs157 at the indicated developmental stages. Scale bars, 5 μm. B: Quantification of animals with abnormally enlarged mitochondria (area ≥12 μm2) as shown in (A). Fifty animals were scored for each genotype. Comparisons are between N2 and mutants. Error bars represent SEM. ∗∗∗, P < 0.001.C: Representative fluorescence and DIC (differential interference contrast) images of mtLS::GFP-labeled structures in muscle and intestinal cells in the indicated animals carrying hqIs181. Scale bars, 5 μm. D: Quantification of animals with abnormally enlarged mitochondria (area ≥12 μm2) as shown in (C). Fifty animals were scored for each genotype. Error bars represent SEM. NS, no statistical significance. E: Representative images of mitochondria labeled with F54A3.5::GFP and TOMM-20::mCh in the hypodermis of animals with the indicated genotypes. Scale bars, 5 μm. F: Representative TEM images of mitochondria in the hypodermis in adult animals with the indicated genotypes. Scale bars, 1 μm. G: Schematic diagram of the argn-1 gene. Black boxes represent exons, and thin lines indicate introns. The point mutations of argn-1 are indicated with asterisks. H: Comparison of C. elegans ARGN-1 with human ARG1 and ARG2. The point mutations in ARGN-1 are indicated with asterisks. MTS, mitochondrion-targeting sequence. I: Graphic description of the arginase-mediated arginine degradation pathway.

    Fig.  2.  Mutations in argn-1 lead to mitochondrial abnormalities. A: The expression pattern of Pgfp in embryos and adult worms. Scale bars, 5 μm. BE: Images of the rescuing effects on argn-1(yq187) mitochondria of ectopically expressed ARGN-1::mCh (B), ARGN-1(G16E)::mCh (C), ARGN-1(D125A/H127A)::mCh (D), and ARGN-1(D229A/D231A)::mCh (E). Scale bars, 5 μm. F: Quantification of animals with abnormally enlarged mitochondria (area ≥12 μm2) as shown in (BE). Fifty animals were scored for each genotype. Error bars represent SEM. ∗∗∗, P < 0.001; NS, no statistical significance.

    Fig.  3.  Loss of slc-25A29 suppresses the mitochondrial enlargement in argn-1(yq187) mutants. A: Schematic diagrams of arginine metabolism pathways in different tissues of mammals and C. elegans. The inner boxes represent mitochondria. Arg, arginine; Orn: ornithine; Cit, citrilline; Glu, glutamate; Gln, glutamine; Pro, proline; CP, carbamyl phosphate; P5C, pyrroline-5-carboxylate; ASL, argininosuccinate lyase; ASS, argininosuccinate synthetase; OTC, ornithine carbamoyltransferase; OAT, ornithine aminotransferase; ODC, ornithine decarboxylase; CPS1, carbamoyl phosphate synthetase I; ARG1/2, arginase1/2; ALH, aldehyde dehydrogenase.BD: Fold change of arginine (B), lysine (C) and ornithine (D) levels in animals with the indicated genotypes. Data (mean ± SEM) were derived from three independent experiments and normalized to arginine, lysine or ornithine intensities in N2 animals. , P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001; NS, no statistical significance.E: Representative images of mitochondria in the hypodermis of N2 and argn-1(yq187) animals with control RNAi or slc-25A29 RNAi treatment. Scale bars, 5 μm. F: Representative images of mitochondria in the hypodermis of N2, argn-1(yq187), oatr-1(tm5454) and oatr-1(tm5454);argn-1(yq187) animals with control RNAi or odc-1 RNAi treatment. Scale bars, 5 μm.

    Fig.  4.  Arginase functions are conserved between C. elegans and humans. AG: Images of the rescuing effects on argn-1(yq187) mitochondria of ectopically expressed hARG1::mCh (A), MTS::hARG1::mCh (B), MTS::hARG1(T134I)::mCh (C), hARG2::mCh (D), hARG2(41–354)::mCh (E), MTS::hARG2(41–354)::mCh (F), and hARG2(T153I)::mCh (G). Scale bars, 5 μm. H: Quantification of animals with abnormally enlarged mitochondria (area ≥12 μm2) as shown in (AG). Fifty animals were scored for each genotype. Error bars represent SEM. ∗∗, P < 0.01;∗∗∗, P < 0.001; NS, no statistical significance.

    Fig.  5.  Mitochondrial dynamics is disrupted in argn-1 mutants. AC: Time-lapse imaging of Mito-GFP-labeled mitochondria in the hypodermis of N2 (A), argn-1(yq187) (6–12 h post L4) (B) and argn-1(yq187) (>12 h post L4) (C) animals. White and red arrows indicate sites of mitochondrial fusion and fission, respectively. Mitochondria undergoing fusion or fission are indicated with dotted purple lines. Scale bars, 5 μm. D: Quantification of fusion and fission events in N2 and argn-1(yq187) animals. Error bars represent SEM. , P < 0.05; NS, no statistical significance.E: Representative images of mitochondria in the hypodermis of N2, argn-1(yq187), fzo-1(tm1133) and fzo-1(tm1133);argn-1(yq187) animals. Scale bars, 5 μm. F: Representative images of mitochondria in the hypodermis of control RNAi- or eat-3 RNAi-treated N2 and argn-1(yq187) animals. Scale bars, 5 μm.

    Fig.  6.  Inactivation of slc-25A29 and slc-25A18.1 suppresses mitochondrial defects in argn-1(yq187) mutants. A: Images of mitochondria in the hypodermis of N2, argn-1(yq187), slc-25A29(yq261);argn-1(yq187) and slc-25A18.1(yq267);argn-1(yq187) animals. Scale bars, 5 μm. B: Quantification of animals with abnormally enlarged mitochondria (area ≥12 μm2) as shown in (A). Fifty animals were scored for each genotype. Error bars represent SEM. ∗∗∗, P < 0.001.C: Relative ATP levels in the hypodermis of animals with the indicated genotypes. Data (mean ± SEM) are from three independent experiments and are normalized to the ATP level in N2 animals. Error bars represent SEM. , P < 0.05.D: Relative mitochondrial membrane potentials in the hypodermis of animals with the indicated genotypes. Data (mean ± SEM) are normalized to the mitochondrial membrane potential in N2 animals. Fifteen animals were scored for each genotype. Error bars represent SEM. ∗∗∗, P < 0.001.E: Schematic diagram of the slc-25A29 gene and SLC-25A29 protein. Black boxes represent exons, and thin lines indicate introns. The point mutation of slc-25A29(yq261) is indicated with an asterisk. F: Schematic diagram of the slc-25A18.1 gene and SLC-25A18.1 protein. Black boxes represent exons, and thin lines indicate introns. The point mutation of slc-25A18.1(yq267) is indicated with an asterisk. G: Representative images of mitochondria in the hypodermis of N2, argn-1(yq187), slc-25A29(yq276), slc-25A29(yq276);argn-1(yq187) and control RNAi- or slc-25A18.1 RNAi-treated N2 and argn-1(yq187) animals. Scale bars, 5 μm. H: Images of the rescuing effects on argn-1(yq187);slc-25A18.1(yq267) mitochondria of ectopically expressed SLC-25A18.1::mCh. Scale bars, 5 μm. I: Representative images of mitochondria in the hypodermis of N2, argn-1(yq187), gdh-1(yq275), idh-2(ok3184), gdh-1(yq275);idh-2(ok3184), gdh-1(yq275);argn-1(yq187), idh-2(ok3184);argn-1(yq187), and gdh-1(yq275);idh-2(ok3184);argn-1(yq187) animals. Scale bars, 5 μm.

  • [1] Breckenridge, D.G., Kang, B.H., Kokel, D., Mitani, S., Staehelin, L.A., Xue, D., 2008. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol. Cell 31, 586-597.
    [2] Camacho, J.A., Rioseco-Camacho, N., 2009. The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr. Res. 66, 35-41.
    [3] Carvalho, D.R., Brand, G.D., Brum, J.M., Takata, R.I., Speck-Martins, C.E., Pratesi, R., 2012. Analysis of novel ARG1 mutations causing hyperargininemia and correlation with arginase I activity in erythrocytes. Gene 509, 124-130.
    [4] Chen, D., Xiao, H., Zhang, K., Wang, B., Gao, Z., Jian, Y., Qi, X., Sun, J., Miao, L., Yang, C., 2010. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261-1264.
    [5] Ciechanover, A., Schwartz, A.L., 1994. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 8, 182-191.
    [6] Davis, M.W., Hammarlund, M., Harrach, T., Hullett, P., Olsen, S., Jorgensen, E.M., 2005. Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6, 118.
    [7] Doghman-Bouguerra, M., Lalli, E., 2019. ER-mitochondria interactions: Both strength and weakness within cancer cells. Biochimica et biophysica acta. Mol. Cell Res. 1866, 650-662.
    [8] Fiermonte, G., Palmieri, L., Todisco, S., Agrimi, G., Palmieri, F., Walker, J.E., 2002. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J. Biol. Chem. 277, 19289-19294.
    [9] Flynn, N.E., Meininger, C.J., Haynes, T.E., Wu, G., 2002. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacoth. 56, 427-438.
    [10] Fong, S., Teo, E., Ng, L.F., Chen, C.B., Lakshmanan, L.N., Tsoi, S.Y., Moore, P.K., Inoue, T., Halliwell, B., Gruber, J., 2016. Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer Disease model. Sci. Rep. 6, 33781.
    [11] Friedman, J.R., Nunnari, J., 2014. Mitochondrial form and function. Nature 505, 335-343.
    [12] Gotoh, T., Sonoki, T., Nagasaki, A., Terada, K., Takiguchi, M., Mori, M., 1996. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 395, 119-122.
    [13] Grody, W.W., Dizikes, G.J., Cederbaum, S.D., 1987. Human arginase isozymes. Isozymes 13, 181-214.
    [14] Hekimi, S., Wang, Y., Noe, A., 2016. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers! Front. Genet. 7, 161.
    [15] Hoogenraad, N., 2017. A brief history of the discovery of the mitochondrial unfolded protein response in mammalian cells. J. Bioenerg. Biomembr. 49, 293-295.
    [16] Ichishita, R., Tanaka, K., Sugiura, Y., Sayano, T., Mihara, K., Oka, T., 2008. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J. Biochem. 143, 449-454.
    [17] Ignarro, L.J., Cirino, G., Casini, A., Napoli, C., 1999. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharm. 34, 879-886.
    [18] Iyer, R., Jenkinson, C.P., Vockley, J.G., Kern, R.M., Grody, W.W., Cederbaum, S., 1998. The human arginases and arginase deficiency. J. Inherit. Metab. Dis. 21 Suppl 1, 86-100.
    [19] Iyer, R.K., Yoo, P.K., Kern, R.M., Rozengurt, N., Tsoa, R., O'Brien, W.E., Yu, H., Grody, W.W., Cederbaum, S.D., 2002. Mouse model for human arginase deficiency. Mol. Cell. Biol. 22, 4491-4498.
    [20] Jenkinson, C.P., Grody, W.W., Cederbaum, S.D., 1996. Comparative properties of arginases. Comparative biochemistry and physiology. Part B, Biochem. Mol. Biol. 114, 107-132.
    [21] Kanyo, Z.F., Scolnick, L.R., Ash, D.E., Christianson, D.W., 1996. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554-557.
    [22] Li, G., Regunathan, S., Barrow, C.J., Eshraghi, J., Cooper, R., Reis, D.J., 1994. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263, 966-969.
    [23] Mishra, P., Chan, D.C., 2016. Metabolic regulation of mitochondrial dynamics. J. Cell. Biol. 212, 379-387.
    [24] Morris, S.M., Jr., Bhamidipati, D., Kepka-Lenhart, D., 1997. Human type II arginase: sequence analysis and tissue-specific expression. Gene 193, 157-161.
    [25] Oxenoid, K., Dong, Y., Cao, C., Cui, T., Sancak, Y., Markhard, A.L., Grabarek, Z., Kong, L., Liu, Z., Ouyang, B., Cong, Y., Mootha, V.K., Chou, J.J., 2016. Architecture of the mitochondrial calcium uniporter. Nature 533, 269-273.
    [26] Pagliarini, D.J., Rutter, J., 2013. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 27, 2615-2627.
    [27] Porcelli, V., Fiermonte, G., Longo, A., Palmieri, F., 2014. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J. Biol. Chem. 289, 13374-13384.
    [28] Ray, A., Martinez, B.A., Berkowitz, L.A., Caldwell, G.A., Caldwell, K.A., 2014. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model. Cell Death Dis. 5, e984.
    [29] Sarasija, S., Norman, K.R., 2015. A gamma-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 201, 1453-1466.
    [30] Sekoguchi, E., Sato, N., Yasui, A., Fukada, S., Nimura, Y., Aburatani, H., Ikeda, K., Matsuura, A., 2003. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J. Biol. Chem. 278, 38796-38802.
    [31] Sin, Y.Y., Baron, G., Schulze, A., Funk, C.D., 2015. Arginase-1 deficiency. J. Mol. Med. 93, 1287-1296.
    [32] Vockley, J.G., Jenkinson, C.P., Shukla, H., Kern, R.M., Grody, W.W., Cederbaum, S.D., 1996. Cloning and characterization of the human type II arginase gene. Genomics 38, 118-123.
    [33] Wong, Y.C., Ysselstein, D., Krainc, D., 2018. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382-386.
    [34] Wu, G., Morris, S.M., Jr., 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336 ( Pt 1), 1-17.
    [35] Wyss, M., Kaddurah-Daouk, R., 2000. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107-1213.
    [36] Youle, R.J., van der Bliek, A.M., 2012. Mitochondrial fission, fusion, and stress. Science 337, 1062-1065.
    [37] Zhang, J., Zhao, C., Chang, Y., Zhao, Y., Li, Q., Lu, X., Xu, G., 2013. Analysis of free amino acids in flue-cured tobacco leaves using ultra-high performance liquid chromatography with single quadrupole mass spectrometry. J. Sep. Sci. 36, 2868-2877.
    [38] Zhou, J., Wang, X., 2019. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol. 218, 580-597.
  • 加载中
图(6)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  38
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回