Clinical utility of whole genome sequencing for the detection of mitochondrial genome mutations
-
-
Table 1. Comparison of variant calls and discordant variants between WGS and PCR-NGS datasets when analyzed by the WGS pipeline.
Sample ID Number of variants called by PCR-NGS Number of variants called by WGS Known pathogenic variants Heteroplasmy level for known pathogenic variants – PCR-NGS (%) Heteroplasmy level for known pathogenic variants – WGS (%) Concordance rate (%) Number of discordant variant Interpretation of discordant variant Sample 1 41 41 m.3243A>G 28 26 100 0 – Sample 2 23 23 ∗m.8696_15438del 99 40 100 0 – Sample 3 31 30 m.8344A>G 96 93 97 1 (Fig.S3 A) Alignment artifact from polynucleotide run Sample 4 30 29 – – – 97 1 (Fig.S3 B) Alignment artifact from polynucleotide run Sample 5 76 77 m.8483_13446del 10 41 99 1 (Fig.S3 C) m.11467A>G detected at 12% heteroplasmy level by WGS, but not detected at all by PCR-NGS. WGS call is likely an artifact Sample 6 57 57 m.13513G>A 64 61 100 0 – Sample 7 14 14 m.10382_15406del 98 20 100 0 – Sample 8 15 15 m.3243A>G 13 14 100 0 – Sample 9 20 20 m.10197G>A 54 49 100 0 – Sample 10 97 98 m.8344A>G 92 80 99 1 (Fig.S3 D) m.961T>G detected at 9% heteroplasmy level by WGS, but not detected at all by PCR-NGS. WGS call is likely an artifact Sample 11 44 44 m.3243A>G 70 67 100 0 – Sample 12 15 15 m.3243A>G 68 66 100 0 – Sample 13 15 15 m.3243A>G 65 64 100 0 – Heteroplasmy levels of point mutations and deletions in mtDNA of patients with clinical features of mitochondriopathy were identified by PCR-NGS and WGS. In the case of the three patients carrying mtDNA deletions (Samples 2, 5, and 7), there is an absence of other disease-causing variants in the nuclear or mitochondrial genomes; thus, their mtDNA deletions have been provisionally treated as the likely source of their mitochondriopathy. These deletions are also treated as a single variant for the purposes of counting the number of variant calls. Snapshots of each discordant variant position can be found in the indicated panels in Fig. S3. No insertions were observed in this set of patients by either PCR-NGS or WGS. It should also be noted that the region covered by the m.8696_15438del deletion in Sample 2 (indicated with an asterisk) also contains the pathogenic variant m.9957T > C, which is present at 100% and 97% frequency in PCR-NGS and WGS, respectively. -
[1] Andrews, R.M., Kubacka, I., Chinnery, P.F., Lightowlers, R.N., Turnbull, D.M., Howell, N., 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147. [2] Bosworth, C.M., Grandhi, S., Gould, M.P., LaFramboise, T., 2017. Detection and quantification of mitochondrial DNA deletions from next-generation sequence data. BMC.Bioinformatics. 18, 407. [3] Brockhage, R., Slone, J., Ma, Z., Hegde, M.R., Valencia, C.A., Huang, T., 2018. Validation of the diagnostic potential of mtDNA copy number derived from whole genome sequencing. J. Genet. Genomics 45, 333-335 [4] Calvo, S., Jain, M., Xie, X., Sheth, S.A., Chang, B., Goldberger, O.A., Spinazzola, A., Zeviani, M., Carr, S.A., Mootha, V.K., 2006. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 38, 576-582. [5] Dayama, G., Emery, S.B., Kidd, J.M., Mills, R.E., 2014. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 42, 12640-12649. [6] Huang, T., 2011. Next generation sequencing to characterize mitochondrial genomic DNA heteroplasmy. Curr. Protoc. Hum. Genet. 0 19, Unit19.8. [7] Li, H., Bi, R., Fan, Y., Wu, Y., Tang, Y., Li, Z., He, Y., Zhou, J., Tang, J., Chen, X., Yao, Y. G., 2017. mtDNA heteroplasmy in monozygotic twins discordant for schizophrenia. Mol. Neurobiol. 54, 4343-4352. [8] Meynert, A.M., Ansari, M., FitzPatrick, D.R., Taylor, M.S., 2014. Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15, 247. [9] Moggio, M., Colombo, I., Peverelli, L., Villa, L., Xhani, R., Testolin, S., Di Mauro, S., Sciacco, M., 2014. Mitochondrial disease heterogeneity: a prognostic challenge. Acta Myol, 33, 86-93. [10] Mourier, T., Hansen, A.J., Willerslev, E., Arctander, P., 2001. The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol. Biol. Evol. 18, 1833-1837. [11] Patowary, A., Nesbitt, R., Archer, M., Bernier, R., Brkanac, Z., 2017. Next Generation Sequencing mitochondrial DNA analysis in autism spectrum disorder. Autism Res 10, 1338-1343. [12] Santibanez-Koref, M., Griffin, H., Turnbull, D.M., Chinnery, P.F., Herbert, M., Hudson, G., 2019. Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution. Mitochondrion 46, 302-306. [13] Stewart, J.B., Chinnery, P.F., 2015. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530-542. [14] Veltri, K.L., Espiritu, M., Singh, G., 1990. Distinct genomic copy number in mitochondria of different mammalian organs. J. Cell. Physiol. 143, 160-164. [15] Wallace, D.C., 2018. Mitochondrial genetic medicine. Nat. Genet. 50, 1642-1649. [16] Wei, W., Tuna, S., Keogh, M.J., Smith, K.R., Aitman, T.J., Beales, P.L., Bennett, D.L., Gale, D.P., Bitner-Glindzicz, M.A.K., Black, G.C., Brennan, P., Elliott, P., Flinter, F.A., Floto, R.A., Houlden, H., Irving, M., Koziell, A., Maher, E.R., Markus, H.S., Morrell, N.W., Newman, W.G., Roberts, I., Sayer, J.A., Smith, K.G.C., Taylor, J.C., Watkins, H., Webster, A.R., Wilkie, A.O.M., Williamson, C., NIHR BioResource-Rare Diseases, 100,000 Genomes Project-Rare Diseases Pilot, Ashford, S., Penkett, C.J., Stirrups, K.E., Rendon, A., Ouwehand, W.H., Bradley, J.R., Raymond, F.L., Caulfield, M., Turro, E., Chinnery, P.F., 2019. Germline selection shapes human mitochondrial DNA diversity. Science 364, eaau6520. [17] Weissensteiner, H., Forer, L., Fuchsberger, C., Schopf, B., Kloss-Brandstatter, A., Specht, G., Kronenberg, F., Schonherr, S., 2016. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res. 44, W64-69. [18] Yao, Y.-G., Kong, Q.-P., Salas, A., Bandelt, H.-J., 2008. Pseudomitochondrial genome haunts disease studies. J. Med. Genet. 45, 769-772. [19] Zhang, W., Cui, H., Wong, L.-J.C., 2012. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin. Chem. 58, 1322-1331. -