-
Abstract: CTP synthase (CTPS) is an important metabolic enzyme that catalyzes the rate-limiting reaction of nucleotide CTP de novo synthesis. Since 2010, a series of studies have demonstrated that CTPS can form filamentous structures in bacteria and eukaryotes, which are termed cytoophidia. However, it is unknown whether cytoophidia exist in the third domain of life, archaea. Using Haloarcula hispanica as a model system, here we demonstrate that CTPS forms distinct intracellular compartments in archaea. Under stimulated emission depletion microscopy, we find that the structures of H. hispanica CTPS are elongated, similar to cytoophidia in bacteria and eukaryotes. When Haloarcula cells are cultured in low-salt medium, the occurrence of cytoophidia increases dramatically. In addition, treatment of H. hispanica with a glutamine analog or overexpression of CTPS can promote cytoophidium assembly. Our study reveals that CTPS can form cytoophidia in all three domains of life, suggesting that forming cytoophidia is an ancient property of CTPS.
-
Key words:
- Archaea /
- CTP synthase /
- Cytoophidium
-
Fig. 1. Neighbor-joining phylogenetic trees of CTPS proteins. A: Representative CTPS proteins from the three life domains are selected and aligned for creating the phylogram. The CTPS proteins from eucarya, bacteria and archaea are respectively shaded in wathet blue, pale green, and pink. Proteins from halobacteria are indicated in carmine. B: Almost all CTPS proteins in Euryarchaeota were used for building the phylogenetic tree, which contains clusters from Halobacteria, Thermoplasmata, Thermococci, Tethanobacteria, Methanomicrobia, Methanococci. CTPS, CTP synthase.
Fig. 2. CTPS forms cytoophidia in H. hispanica. A: C-terminal targeting of endogenous H. hispanica CTPS (HhCTPS) with GFP. B: Confocal images of H. hispanica show the compartmentalized capability of HhCTPS in the late log phase. Arrows point to the punctate structure. The DIC image represents the cell contour.C: In H. hispanica cell, a compartmented CTPS structure (green, upper pane) observed under conventional confocal microscopy shows an elongated shape (red, lower panel) under stimulated emission depletion (STED) microscopy. This elongated filamentous structure in the archaeal cell resembles cytoophidia described in bacteria and eukaryotes. D: Heterologous expression of HhCTPS in E. coli. Homogenous E. coli CTPS (EcCTPS) forms longer cytoophidia in more E. coli cells than heterogeneous HhCTPS. Both HhCTPS and EcCTPS are tagged with mCherry. H. hispanica is collected in the late log phase; E. coli is collected in stationary phase. Scale bars, 5 μm in B and D, 1 μm in C. CTPS, CTP synthase; DIC, differential interference contrast.
Fig. 3. Low salinity and DON treatment change cell shapes in H. hispanica. A: DIC images of HhCTPS-GFP in normal conditions, low-salinity medium, DON-treated medium, on the third day of cultivation.B–D: Images were analyzed for cell size (B), circularity (C), and length (the longer side of minimum bounding rectangle) (D). n = 1897 cells in normal conditions, 1181 cells in low-salinity medium, and 1874 cells in DON-treated medium. Scale bars, 5 μm. DIC, differential interference contrast; DON, 6-diazo-5-oxo-l-norleucine.
Fig. 4. Low salinity promotes the compartmentation of CTP synthase in H. hispanica. A: Many compartmentalized structures appear in the low-salinity medium. B: Compartmentation ratio increases in the low-salt medium. Cells were collected at the first day (n = 1117 cells in AS168, 1553 cells in 1.5 M NaCl AS168), the second day (n = 2538 cells in AS168, 2180 cells in 1.5 M NaCl AS168), the third day (n = 3069 cells in AS168, 2118 cells in 1.5 M NaCl AS168), and the fifth day (n = 2639 cells in AS168, 1001 cells in 1.5 M NaCl AS168) of cultivation. Mean ± SD, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗∗P < 0.0001.C and D: H. hispanica cannot grow normally in 1.5 M NaCl AS168 medium. There are red colonies in the AS168 plate (left pane), but no colonies in 1.5 M NaCl AS168 after 10 days of incubation (right pane) (C). The growth curve of H. hispanica in the two media with a log scale for y axis (D). E–H: Salt supplementation recovers cell growth but decreases the abundance of punctate structures. Confocal images (E), ratio of compartmentalized structures (F) (n = 1001 cells for low-salt culture, 1072 cells for normal AS168 culture), growth curve (G), and plates (H) show that salinity recovery diminishes compartmentation of HhCTPS-GFP. Positions of four repeat inoculations per plate are at the four corners of the red squares. Mean ± SD, ∗∗∗∗P < 0.0001. Scale bars, 5 μm. SD, standard deviation.
Fig. 5. Overexpressing CTPS promotes cytoophidium assembly in H. hispanica. A: Confocal images of OE-GFP and OE-HhCTPS-GFP in late log phase in AS168 medium. B: STED images of OE-HhCTPS-GFP. C: Images of OE-HhCTPS-GFP sampled at different time points. D: Growth curve of DF60, OE-GFP, and OE-HhCTPS-GFP with a log scale for y axis. E and F: Quantification analysis of images of OE-HhCTPS-GFP for the abundance of compartmentalized structures and foci size. Mean ± SD inD, mean with 95% CI in E and F. n = 1210 cells for 6 h, 1247 cell for 1 day, 1378 cells for 2 days, 1540 cells for 3 days, 1961 cells for 5 days, and 1938 cells for 7 days in E. n = 814 cells for 6 h, 478 for 1 day, 619 cells for 2 days, 740 cells for 3 days, 1230 cells for 5 days, and 1330 cells for 7 days in F. Scale bars, 5 μm in A and C. CI, confidence interval; CTPS, CTP synthase; HhCTPS, H. hispanica CTPS; SD, standard deviation; STED, stimulated emission depletion.
Fig. 6. Yeast extract deprivation promotes cytoophidium formation in H. hispanica. A: Confocal images of HhCTPS-GFP in normal and yeast extract–subtracted AS168 on the third day of cultivation. B: Quantification of the cells containing compartmentalized structures. n = 985 cells for 1 day, 1322 cell for 3 days, 1445 cells for 5 days, and 1259 cells for 7 days in AS168. n = 1316 cells for 1 day, 1436 cells for 3 days, 1042 cells for 5 days, and 1172 cells for 7 days in yeast extract–subtracted AS168. Mean ± SD. C: Comparison of confocal and STED images of HhCTPS-GFP in yeast extract–subtracted AS168 on the third day of cultivation. D: Growth curve of HhCTPS with a log scale for y axis. Scale bars, 5 μm in A and the upper panes of C. 1 μm in the lower panes in C. SD, standard deviation; STED, stimulated emission depletion. Mean ± SD, ∗∗P < 0.01, ∗∗∗ P < 0.001, ∗∗∗∗ P < 0.0001.
-
[1] An, S., Kumar, R., Sheets, E.D., Benkovic, S.J., 2008. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103-106. [2] Andreadis, C., Hulme, L., Wensley, K., Liu, J.L., 2019. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J. Biol. Chem. 294, 14686–14703. [3] Aughey, G.N., Grice, S.J., Liu, J.L., 2016. The interplay between Myc and CTP synthase in Drosophila. PLoS Genet. 12, e1005867. [4] Aughey, G.N., Grice, S.J., Shen, Q.J., Xu, Y., Chang, C.C., Azzam, A., Wang, P.Y., Freeman-Mills, L., Pai, L.M., Sung, L.Y., Yan, J., Liu, J.L., 2014. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biol. Open 3, 1045–1056. [5] Aughey, G.N., Liu, J.L., 2015. Metabolic regulation via enzyme filamentation. Crit. Rev. Biochem. Mol. Biol. 51, 282–293. [6] Azzam, G., Liu, J.L., 2013. Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet. 9, e1003256. [7] Barry, R.M., Bitbol, A.F., Lorestani, A., Charles, E.J., Habrian, C.H., Hansen, J.M., Li, H.J., Baldwin, E.P., Wingreen, N.S., Kollman, J.M., Gitai, Z., 2014. Large-scale filament formation inhibits the activity of CTP synthetase. Elife 3, e03638. [8] Boeke, J.D., La Croute, F., Fink, G.R., 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular and General Genetics MGG 197, 345-346. [9] Cai, S., Cai, L., Liu, H., Liu, X., Han, J., Zhou, J., Xiang, H., 2012. Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol 78, 1946-1952. [10] Cajal, S.R., 1903. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol.(Madrid) 2, 129-221. [11] Carcamo, W.C., Satoh, M., Kasahara, H., Terada, N., Hamazaki, T., Chan, J.Y., Yao, B., Tamayo, S., Covini, G., von Muhlen, C.A., Chan, E.K., 2011. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS ONE 6, e29690. [12] Carman, G.M., Henry, S.A., 1989. Phospholipid biosynthesis in yeast. Annu Rev Biochem 58, 635-669. [13] Chakraborty, K., Hurlbert, R., 1961. Role of glutamine in the biosynthesis of cytidine nucleotides in Escherichia coli. Biochimica et biophysica acta 47, 607-609. [14] Chang, C.C., Jeng, Y.M., Peng, M., Keppeke, G.D., Sung, L.Y., Liu, J.L., 2017. CTP synthase forms the cytoophidium in human hepatocellular carcinoma. Exp. Cell Res. 361, 292–299. [15] Chang, C.C., Keppeke, G.D., Sung, L.Y., Liu, J.L., 2018. Interfilament interaction between IMPDH and CTPS cytoophidia. FEBS J. 285, 3753–3768. [16] Chang, C.C., Lin, W.C., Pai, L.M., Lee, H.S., Wu, S.C., Ding, S.T., Liu, J.L., Sung, L.Y., 2015. Cytoophidium assembly reflects upregulation of IMPDH activity. J. Cell Sci. 128, 3550–3555. [17] Chen, K., Zhang, J., Tastan, O.Y., Deussen, Z.A., Siswick, M.Y., Liu, J.L., 2011. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J Genet Genomics 38, 391-402. [18] Daumann, M., Hickl, D., Zimmer, D., DeTar, R.A., Kunz, H.H., Mohlmann, T., 2018. Characterization of filament-forming CTP synthases from Arabidopsis thaliana. Plant J 96, 316-328. [19] Diekmann, Y., Pereira-Leal, J.B., 2013. Evolution of intracellular compartmentalization. Biochemical journal 449, 319-331. [20] Duggin, I.G., Aylett, C.H., Walsh, J.C., Michie, K.A., Wang, Q., Turnbull, L., Dawson, E.M., Harry, E.J., Whitchurch, C.B., Amos, L.A., 2015. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362. [21] Dyall-Smith, M., 2008. The Halohandbook: protocols for haloarchaeal genetics. Haloarchaeal Genetics Laboratory, Melbourne 14. [22] Enache, M., Popescu, G., Dumitru, L., Kamekura, M., 2009. The effect of Na+/Mg2+ ratio on the amylase activity of haloarchaea isolated from Techirghiol lake, Romania, a low salt environment. Proc Rom Acad Series B 11, 3-7. [23] Endrizzi, J.A., Kim, H., Anderson, P.M., Baldwin, E.P., 2004. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets. Biochemistry 43, 6447-6463. [24] Endrizzi, J.A., Kim, H., Anderson, P.M., Baldwin, E.P., 2005. Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 44, 13491-13499. [25] Garrity, G.M., 2012. Bergey's manual of systematic bacteriology: Volume one: the Archaea and the deeply branching and phototrophic bacteria. Springer Science & Business Media. [26] Gou, K.M., Chang, C.C., Shen, Q.J., Sung, L.Y., Liu, J.L., 2014. CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp. Cell Res. 323, 242–253. [27] Green, M.R., Sambrook, J., 2012. Molecular Cloning: A Laboratory Manual (Fourth Edition). Cold Spring Harbor Laboratory Press, New York, pp. 1–2028. [28] Han, J., Lu, Q., Zhou, L., Liu, H., Xiang, H., 2009. Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii. Appl Environ Microbiol 75, 6168-6175. [29] Huang, Y., Wang, J.J., Ghosh, S., Liu, J.L., 2017. Critical roles of CTP synthase N-terminal in cytoophidium assembly. Exp. Cell Res. 354, 122–133. [30] Ingerson-Mahar, M., Briegel, A., Werner, J.N., Jensen, G.J., Gitai, Z., 2010. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 12, 739-746. [31] Juez, G., Rodriguez-Valera, F., Ventosa, A., Kushner, D.J., 1986. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec, nov., two new species of extremely halophilic archaebacteria. Systematic and Applied Microbiology 8, 75-79. [32] Koshland Jr, D., Levitzki, A., 1974. 16. CTP Synthetase and Related Enzymes, The Enzymes. Elsevier, pp. 539-559. [33] Kurtz, J.-E, Exinger, F., Erbs, P., Jund, R., 2002. The URH1 uridine ribohydrolase of Saccharomyces cerevisiae. Curr. genetics 41, 132–141. [34] Levitzki, A., Koshland, D.E., Jr., 1972. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase. Biochemistry 11, 241-246. [35] Levitzki, A., Koshland Jr, D., 1971. Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action. Biochemistry 10, 3365-3371. [36] Li, H., Ye, F., Ren, J.Y., Wang, P.Y., Du, L.L., Liu, J.L., 2018. Active transport of cytoophidia in Schizosaccharomyces pombe. FASEB J. 32, 5891–5898. [37] Lieberman, I., 1956. Enzymatic amination of uridine triphosphate to cytidine triphosphate. J Biol Chem 222, 765-775. [38] Liu, J.-L., 2010. Intracellular compartmentation of CTP synthase in Drosophila. Journal of Genetics and Genomics 37, 281-296. [39] Liu, J.L., 2011. The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation. Bioessays 33, 159–164. [40] Liu, J.L., 2016. The Cytoophidium and Its Kind: Filamentation and Compartmentation of Metabolic Enzymes. Annu Rev Cell Dev Biol 32, 349-372. [41] Liu, H., Han, J., Liu, X., Zhou, J., Xiang, H., 2011a. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics 38, 261-269. [42] Liu, H., Wu, Z., Li, M., Zhang, F., Zheng, H., Han, J., Liu, J., Zhou, J., Wang, S., Xiang, H., 2011b. Complete genome sequence of Haloarcula hispanica, a Model Haloarchaeon for studying genetics, metabolism, and virus-host interaction. J Bacteriol 193, 6086-6087. [43] Long, C., Koshland, D.E., Jr., 1978. Cytidine triphosphate synthetase. Methods Enzymol 51, 79-83. [44] Long, C.W., Pardee, A.B., 1967. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J Biol Chem 242, 4715-4721. [45] Lynch, E.M., Hicks, D.R., Shepherd, M., Endrizzi, J.A., Maker, A., Hansen, J.M., Barry, R.M., Gitai, Z., Baldwin, E.P., Kollman, J.M., 2017. Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol 24, 507-514. [46] Lynch, E.M., Kollman, J.M., 2019. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nature Structural & Molecular Biology, 1-7. [47] MacDonnell, J.E., Lunn, F.A., Bearne, S.L., 2004. Inhibition of E. coli CTP synthase by the “positive” allosteric effector GTP. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1699, 213-220. [48] Madern, D., Ebel, C., Zaccai, G., 2000. Halophilic adaptation of enzymes. Extremophiles 4, 91-98. [49] Noree, C., Sato, B.K., Broyer, R.M., Wilhelm, J.E., 2010. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190, 541-551. [50] Ostrander, D.B., O’Brien, D.J., Gorman, J.A., Carman, G.M., 1998. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry 273, 18992-19001. [51] Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4, 406-425. [52] Sakaguchi, K., Funaoka, N., Tani, S., Hobo, A., Mitsunaga, T., Kano, Y., Suzuki, T., 2013. The pyrE Gene as a Bidirectional Selection Marker in Bifidobacterium Longum 105-A. Biosci. Microbiota Food Health 32, 59–68. [53] Schmidt, I., Pfeifer, F., 2013. Use of GFP-GvpE fusions to quantify the GvpD-mediated reduction of the transcriptional activator GvpE in haloarchaea. Archives of microbiology 195, 403-412. [54] Shen, Q.J., Kassim, H., Huang, Y., Li, H., Zhang, J., Li, G., Wang, P.Y., Yan, J., Ye, F., Liu, J.L., 2016. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae. J. Genet. Genomics 43, 393–404. [55] Sun, Z., Liu, J.-L., 2019. Forming cytoophidia prolongs the half-life of CTP synthase. Cell Discovery 5, 32. [56] Sun, Z., Liu, J.L., 2019. mTOR-S6K1 pathway mediates cytoophidium assembly. J. Genet. Genomics 46, 65–74. [57] Tastan, Ö.Y., Liu, J.L., 2015. Visualizing cytoophidia expression in Drosophila follicle cells via immunohistochemistry. Methods Mol. Biol. 1328, 179–189. [58] Tastan, Ö.Y., Liu, J.L., 2015. CTP synthase is required for optic lobe homeostasis in Drosophila. J. Genet. Genomics 42, 261–274. [59] Thombre, R.S., Shinde, V.D., Oke, R.S., Dhar, S.K., Shouche, Y.S., 2016. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Scientific reports 6, 25642. [60] Willemoes, M., 2004. Competition between ammonia derived from internal glutamine hydrolysis and hydroxylamine present in the solution for incorporation into UTP as catalysed by Lactococcus lactis CTP synthase. Archives of biochemistry and biophysics 424, 105-111. [61] Woese, C.R., Kandler, O., Wheelis, M.L., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences 87, 4576-4579. [62] Wu, Z., Liu, J.L., 2019. Cytoophidia respond to nutrient stress in Drosophila. Exp. Cell Res 376, 159–167. [63] Zhang, B., Tastan, O.Y., Zhou, X., Guo, C.J., Liu, X., Thind, A., Hu, H.H., Zhao, S., Liu, J.L., 2020. The proline synthesis enzyme P5CS forms cytoophidia in Drosophila. J. Genet. Genomics. [64] Zhang, J., Hulme, L., Liu, J.L., 2014. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe. Biol Open 3, 1092-1097. [65] Zhang, J., Liu, J.L., 2019. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. J. Genet. Genomics 46, 423–432. [66] Zhang, S., Ding, K., Shen, Q.J., Zhao, S., Liu, J. L., 2018. Filamentation of asparagine synthetase in Saccharomyces cerevisiae. PLoS Genet. 14, e1007737. [67] Zhou, X., Guo, C.-J., Hu, H., Zhong, J., Sun, Q., Liu, D., Zhou, S., Chang, C.C., Liu, J.-L., 2019. Drosophila CTP synthase can form distinct substrate-and product-bound filaments. Journal of Genetics and Genomics. -