Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver
-
These authors contributed equally to this work.
-
Fig. 1. Contribution of endothelial cells (ECs) to hepatocytes through cell fusion. A, C and F: Schematic showing lineage tracing strategies (A and C) and Cdh5-DreER knock-in strategy (F). D, G and K: Schematic showing experimental procedures for tamoxifen (Tam) treatment and tissue analysis at the indicated time points after Tam treatment. B, E and H: Immunostaining for tdTomato (tdT), VE-Cad (an EC marker), and HNF4a (a hepatocyte marker) on liver sections from adult Tie2-Dre;R26-rox-tdT and Cdh5-Dre;R26-rox-tdT (B), Cdh5-CreER;R26-tdT (E), and Cdh5-DreER;R26-rox-tdT (H) mice, respectively. The percentage of tdT+ ECs and the cell number of tdT+ hepatocytes on liver sections are shown on the right. Arrowheads indicate tdT+ hepatocytes. 10w, 10 weeks old; +1w, 1 week after Tam treatment; +20w, 20 weeks after Tam treatment.I: Schematic showing design of dual recombinase-mediated lineage tracing of ECs and hepatocytes. J: Two possible cellular mechanisms: trans-differentiation and cell fusion. L: Fluorescence-activated cell sorting (FACS) analysis of tdT+ hematopoietic cells in liver, blood, and bone marrow (BM) from Alb-Cre;Cdh5-DreER;IR3 mice at 1 week after Tam treatment. M and N: Immunostaining for ZsGreen, tdT, and HNF4a on liver sections from Alb-Cre;Cdh5-DreER;IR3 mice at 1 week (M) and 12 weeks (N) of Tam treatment, respectively. Arrowheads indicate tdT+ZsGreen+ hepatocytes. O:The percentage of tdT+ ECs and the cell number of tdT+ hepatocytes on liver sections shown in M and N. Scale bars, 100 μm. Each image is representative of 3–5 individual biological samples.
-
[1] Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., Lois, C., Morrison, S. J., and Alvarez-Buylla, A. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968-973. [2] Anastassiadis, K., Fu, J., Patsch, C., Hu, S., Weidlich, S., Duerschke, K., Buchholz, F., Edenhofer, F., and Stewart, A. F. (2009). Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Model Mech. 2, 508-515. [3] Deng, X., Zhang, X., Li, W., Feng, R. X., Li, L., Yi, G. R., Zhang, X. N., Yin, C., Yu, H. Y., Zhang, J. P., Lu, B., Hui, L., and Xie, W. F. (2018). Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114-122.e3. [4] Ding, B. S., Cao, Z., Lis, R., Nolan, D. J., Guo, P., Simons, M., Penfold, M. E., Shido, K., Rabbany, S. Y., and Rafii, S. (2013). Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102. [5] Ding, B. S., Cao, Z., Lis, R., Nolan, D. J., Guo, P., Simons, M., Penfold, M. E., Shido, K., Rabbany, S. Y., and Rafii, S. (2014). Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102. [6] He, L., Li, Y., Li, Y., Pu, W., Huang, X., Tian, X., Wang, Y., Zhang, H., Liu, Q., Zhang, L., Zhao, H., Tang, J., Ji, H., Cai, D., Han, Z., Han, Z., Nie, Y., Hu, S., Wang, Q. D., Sun, R., Fei, J., Wang, F., Chen, T., Yan, Y., Huang, H., Pu, W. T., and Zhou, B. (2017). Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488-1498. [7] Lu, X., and Kang, Y. (2009). Cell fusion as a hidden force in tumor progression. Cancer Res. 69, 8536-8539. [8] Miyajima, A., Tanaka, M., and Itoh, T. (2014). Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561-574. [9] Postic, C., Shiota, M., Niswender, K. D., Jetton, T. L., Chen, Y., Moates, J. M., Shelton, K. D., Lindner, J., Cherrington, A. D., and Magnuson, M. A. (1999). Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305-315. [10] Raven, A., Lu, W. Y., Man, T. Y., Ferreira-Gonzalez, S., O’Duibhir, E., Dwyer, B. J., Thomson, J. P., Meehan, R. R., Bogorad, R., Koteliansky, V., Kotelevtsev, Y., Ffrench-Constant, C., Boulter, L., and Forbes, S. J. (2017). Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350-354. [11] Schaub, J. R., Malato, Y., Gormond, C., and Willenbring, H. (2014). Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933-939. [12] Tarlow, B. D., Pelz, C., Naugler, W. E., Wakefield, L., Wilson, E. M., Finegold, M. J., and Grompe, M. (2014). Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605-618. [13] Tian, X., Pu, W. T., and Zhou, B. (2015). Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515-530. [14] Vassilopoulos, G., Wang, P. R., and Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901-904. [15] Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., Olson, S., and Grompe, M. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897-901. [16] Wang, Y., Nakayama, M., Pitulescu, M. E., Schmidt, T. S., Bochenek, M. L., Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., Barberis, A., Benjamin, L. E., Makinen, T., Nobes, C. D., and Adams, R. H. (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486. [17] Willenbring, H., Bailey, A. S., Foster, M., Akkari, Y., Dorrell, C., Olson, S., Finegold, M., Fleming, W. H., and Grompe, M. (2004). Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744-748. [18] Yanger, K., Knigin, D., Zong, Y., Maggs, L., Gu, G., Akiyama, H., Pikarsky, E., and Stanger, B. Z. (2014). Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340-349. -