留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver

Wenjuan Pu Ximeng Han Mingjun Zhang Yan Li Xiuzhen Huang Lingjuan He Bin Zhou

Wenjuan Pu, Ximeng Han, Mingjun Zhang, Yan Li, Xiuzhen Huang, Lingjuan He, Bin Zhou. Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver[J]. Journal of Genetics and Genomics, 2020, 47(4): 225-228. doi: 10.1016/j.jgg.2020.03.006
Citation: Wenjuan Pu, Ximeng Han, Mingjun Zhang, Yan Li, Xiuzhen Huang, Lingjuan He, Bin Zhou. Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver[J]. Journal of Genetics and Genomics, 2020, 47(4): 225-228. doi: 10.1016/j.jgg.2020.03.006

doi: 10.1016/j.jgg.2020.03.006

Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver

More Information
    Corresponding author: E-mail address: zhoubin@sibs.ac.cn (Bin Zhou)
  • These authors contributed equally to this work.
  • These authors contributed equally to this work.
  • Fig.  1.  Contribution of endothelial cells (ECs) to hepatocytes through cell fusion. A, C and F: Schematic showing lineage tracing strategies (A and C) and Cdh5-DreER knock-in strategy (F). D, G and K: Schematic showing experimental procedures for tamoxifen (Tam) treatment and tissue analysis at the indicated time points after Tam treatment. B, E and H: Immunostaining for tdTomato (tdT), VE-Cad (an EC marker), and HNF4a (a hepatocyte marker) on liver sections from adult Tie2-Dre;R26-rox-tdT and Cdh5-Dre;R26-rox-tdT (B), Cdh5-CreER;R26-tdT (E), and Cdh5-DreER;R26-rox-tdT (H) mice, respectively. The percentage of tdT+ ECs and the cell number of tdT+ hepatocytes on liver sections are shown on the right. Arrowheads indicate tdT+ hepatocytes. 10w, 10 weeks old; +1w, 1 week after Tam treatment; +20w, 20 weeks after Tam treatment.I: Schematic showing design of dual recombinase-mediated lineage tracing of ECs and hepatocytes. J: Two possible cellular mechanisms: trans-differentiation and cell fusion. L: Fluorescence-activated cell sorting (FACS) analysis of tdT+ hematopoietic cells in liver, blood, and bone marrow (BM) from Alb-Cre;Cdh5-DreER;IR3 mice at 1 week after Tam treatment. M and N: Immunostaining for ZsGreen, tdT, and HNF4a on liver sections from Alb-Cre;Cdh5-DreER;IR3 mice at 1 week (M) and 12 weeks (N) of Tam treatment, respectively. Arrowheads indicate tdT+ZsGreen+ hepatocytes. O:The percentage of tdT+ ECs and the cell number of tdT+ hepatocytes on liver sections shown in M and N. Scale bars, 100 μm. Each image is representative of 3–5 individual biological samples.

  • [1] Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., Lois, C., Morrison, S. J., and Alvarez-Buylla, A. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968-973.
    [2] Anastassiadis, K., Fu, J., Patsch, C., Hu, S., Weidlich, S., Duerschke, K., Buchholz, F., Edenhofer, F., and Stewart, A. F. (2009). Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Model Mech. 2, 508-515.
    [3] Deng, X., Zhang, X., Li, W., Feng, R. X., Li, L., Yi, G. R., Zhang, X. N., Yin, C., Yu, H. Y., Zhang, J. P., Lu, B., Hui, L., and Xie, W. F. (2018). Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114-122.e3.
    [4] Ding, B. S., Cao, Z., Lis, R., Nolan, D. J., Guo, P., Simons, M., Penfold, M. E., Shido, K., Rabbany, S. Y., and Rafii, S. (2013). Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102.
    [5] Ding, B. S., Cao, Z., Lis, R., Nolan, D. J., Guo, P., Simons, M., Penfold, M. E., Shido, K., Rabbany, S. Y., and Rafii, S. (2014). Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102.
    [6] He, L., Li, Y., Li, Y., Pu, W., Huang, X., Tian, X., Wang, Y., Zhang, H., Liu, Q., Zhang, L., Zhao, H., Tang, J., Ji, H., Cai, D., Han, Z., Han, Z., Nie, Y., Hu, S., Wang, Q. D., Sun, R., Fei, J., Wang, F., Chen, T., Yan, Y., Huang, H., Pu, W. T., and Zhou, B. (2017). Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488-1498.
    [7] Lu, X., and Kang, Y. (2009). Cell fusion as a hidden force in tumor progression. Cancer Res. 69, 8536-8539.
    [8] Miyajima, A., Tanaka, M., and Itoh, T. (2014). Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561-574.
    [9] Postic, C., Shiota, M., Niswender, K. D., Jetton, T. L., Chen, Y., Moates, J. M., Shelton, K. D., Lindner, J., Cherrington, A. D., and Magnuson, M. A. (1999). Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305-315.
    [10] Raven, A., Lu, W. Y., Man, T. Y., Ferreira-Gonzalez, S., O’Duibhir, E., Dwyer, B. J., Thomson, J. P., Meehan, R. R., Bogorad, R., Koteliansky, V., Kotelevtsev, Y., Ffrench-Constant, C., Boulter, L., and Forbes, S. J. (2017). Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350-354.
    [11] Schaub, J. R., Malato, Y., Gormond, C., and Willenbring, H. (2014). Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933-939.
    [12] Tarlow, B. D., Pelz, C., Naugler, W. E., Wakefield, L., Wilson, E. M., Finegold, M. J., and Grompe, M. (2014). Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605-618.
    [13] Tian, X., Pu, W. T., and Zhou, B. (2015). Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515-530.
    [14] Vassilopoulos, G., Wang, P. R., and Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901-904.
    [15] Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., Olson, S., and Grompe, M. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897-901.
    [16] Wang, Y., Nakayama, M., Pitulescu, M. E., Schmidt, T. S., Bochenek, M. L., Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., Barberis, A., Benjamin, L. E., Makinen, T., Nobes, C. D., and Adams, R. H. (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486.
    [17] Willenbring, H., Bailey, A. S., Foster, M., Akkari, Y., Dorrell, C., Olson, S., Finegold, M., Fleming, W. H., and Grompe, M. (2004). Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744-748.
    [18] Yanger, K., Knigin, D., Zong, Y., Maggs, L., Gu, G., Akiyama, H., Pikarsky, E., and Stanger, B. Z. (2014). Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340-349.
  • 加载中
图(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  50
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回