A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population
-
Abstract: The Psychiatric Genomics Consortium (PGC) has recently identified 10 potential functional coding variants for schizophrenia. However, how these coding variants confer schizophrenia risk remains largely unknown. Here, we investigate the associations between eight potential functional coding variants identified by PGC and schizophrenia in a large Han Chinese sample (n = 4022 cases and 9270 controls). Among the eight tested single nucelotide polymorphisms (SNPs), rs3617 (a missense variant, p.K315Q in the ITIH3 gene) showed genome-wide significant association with schizophrenia in the Han Chinese population (P = 8.36 × 10−16), with the same risk allele as in PGC. Interestingly, rs3617 is located in a genomic region that is highly evolutionarily conserved, and its schizophrenia risk allele (C allele) was associated with lower ITIH3 mRNA and protein expression. Intriguingly, mouse neural stem cells stably overexpressing ITIH3 with different alleles of rs3617 exhibited significant differences in proliferation, migration, and differentiation, suggesting the impact of rs3617 on neurodevelopment. Subsequent transcriptome analysis found that the differentially expressed genes in neural stem cells stably overexpressing different alleles of rs3617 were significantly enriched in schizophrenia-related pathways, including cell adhesion, synapse assembly, MAPK and PI3K-AKT pathways. Our study provides convergent lines of evidence suggesting that rs3617 in ITIH3 likely affects protein function and neurodevelopment and thereby confers risk of schizophrenia.
-
Key words:
- Schizophrenia /
- ITIH3 /
- Missense variant /
- Association /
- Neurodevelopment /
- Neural stem cells
-
Fig. 1. rs3617 is located in an evolutionarily highly conserved region. A: Gene structure of ITIH3 and the location of rs3617. Single Nucleotide Polymorphism (SNP) rs3617 is located in the exon 9 of ITIH3 gene. B: SNP rs3617 is located in the vWFA domain. The C allele (risk allele) of rs3617 encodes glutamine, whereas the A allele encodes lysine. C: SNP rs3617 is located in an evolutionarily highly conserved region. The amino acid at the rs3617 site is lysine in most species. However, a new amino acid (glutamine) has emerged in humans. D and E: 3D structure prediction of ITIH3 protein using the SWISS-MODEL website. The locations of amino acids (lysine and glutamine) encoded by different alleles of rs3617 are shown (arrowheads). vWFA, von Willebrand factor type A; VIT, vault protein inter-alpha-trypsin.
Fig. 2. The C allele of rs3617 is associated with lower ITIH3 protein expression. A: ITIH3 expression vectors (2.5 μg) containing C (pEGFP-ITIH3-C) and A (pEGFP-ITIH3-A allele) alleles of rs3617 were transiently transfected into HEK293 cells. Western blotting (WB) was used to quantify ITIH3 protein expression, and actin was used as an internal control. The normalized ITIH3 expression values (GFP/actin) were compared to test if different alleles of rs3617 affected ITIH3 expression. Total proteins were collected at three time points (24, 48, and 72 h) after transfection, and WB was performed. B‒D: Quantification results of ITIH3 expression at 24 h (B), 48 h (C) and 72 h (D) after transfection. Data are represented as mean ± SD, andP values were calculated using two-tailed Student's t-test, n = 6. E: ITIH3 expression vectors containing different alleles of rs3617 were constructed and Flag was fused to the N-terminus of the ITIH3 coding sequence. The constructed expression vectors (2.5 μg) were transfected into HEK293 cells. Forty-eight hours after transfection, total protein was extracted, and ITIH3 expression was quantified. WB showed that the C allele of rs3617 was associated with lower ITIH3 protein expression. F: Quantification of the WB results shown in E. Data are represented as mean ± SD, and P values were calculated using two-tailed Student's t-test, n= 3. G: Proteins of mNSCs stably overexpressing different alleles of rs3617 were extracted, and WB showed that the C allele of rs3617 was associated with lower ITIH3 protein expression in mNSCs. H: Quantification of the WB results shown in G, n = 3. ∗, P < 0.05; ∗∗∗,P < 0.001. SD, standard deviation; mNSC, mouse neural stem cell.
Fig. 3. The mNSCs stably transfected with different alleles of rs3617 exhibited significant differences in proliferation. A–E: Isolation and characterization of the mNSCs. Immunofluorescence staining with three well-characterized NSC markers (PAX6, NESTIN, and SOX2) confirmed that the cells isolated were NSCs. F: BrdU incorporation assay showed that NSCs stably transfected with the rs3617 C allele had significantly higher proliferation rates than those transfected with the rs3617 A allele. G: The quantified results of the BrdU incorporation assay. H: CCK-8 assay revealed that NSCs stably transfected with the C allele had higher proliferation rates.I: HEK293 cells transiently transfected with the C allele had significantly higher proliferation rates than cells transfected with the A allele. J: Quantified results of the BrdU incorporation assay in I. K: CCK-8 assay revealed that HEK293 cells transiently transfected with ITIH3 expression vector containing the C allele of rs3617 had higher proliferation rates than cells containing the A allele. Data are represented as mean ± SD, and P values are calculated using two-tailed Student's t-test; n = 3 and a total of 10 randomly selected immunostaining images were used for cell counting for G; n = 5 for H; n = 3 and a total of six immunostaining images were used for cell counting for J; n = 5 for K. ∗, P < 0.05; ∗∗,P < 0.01; ∗∗∗,P < 0.001. mNSC, mouse neural stem cell; SD, standard deviation; BrdU, 5-bromo-2-deoxyuridine; CCK-8, Cell Counting Kit-8.
Fig. 4. NSCs stably transfected with different alleles of rs3617 exhibited significant differences in migration. A: Representative photographs for the migration assay. Neurospheres with similar diameters were selected and seeded into laminin-coated 24-well plates. After culturing neurospheres in the differentiation medium for 24 h, the migration distances of neurospheres were measured by subtracting the radius of the original neurosphere from the radius of the neurosphere at 24 h. B: Quantified results of the migration assay in A. Data are represented as mean ± SD, and P value was calculated using two-tailed Student's t-test; 5 independent neurospheres were analyzed for each group. Scale bar represents 500 μm in A. ∗, P < 0.05. NSC, neural stem cell; SD, standard deviation.
Fig. 5. The mNSCs stably transfected with different alleles of rs3617 exhibited significant differences in differentiation. A: Differentiation of mNSCs stably transfected with either the C or A allele of rs3617 into astrocytes. Representative immunostaining for GFAP, a marker for astrocytes. B: The quantification of results in A. Compared with mNSCs stably transfected with the A allele of rs3716, the differentiation of cells stably transfected with the rs3617 C allele into astrocytes (GFAP-positive) was significantly impaired. C: Differentiation of mNSCs into mature neurons. Representative immunostaining images for MAP2, a marker for mature neurons. D: The quantified results in C. Compared with mNSCs stably transfected with the A allele of rs3716, the differentiation of mNSCs stably expressing the rs3617 C allele into neurons (MAP2positive) was significantly increased. E and F: Representative immunostaining images ( E) and corresponding quantification ( F) of immature postmitotic neurons which are TUJ1 positive. Data are represented as mean ± SD, and P values were calculated using two-tailed Student's t-test, n = 3 and a total of 11 immunostaining images were used for cell counting for B; n = 3 and a total of 15 immunostaining images were used for cell counting for D; n = 3 and a total of 15 immunostaining images were used for cell counting for F. Scale bar represents 50 μm in A, C, and E. ∗∗, P < 0.01, ∗∗∗,P < 0.001. mNSC, mouse neural stem cell; SD, standard deviation.
Fig. 6. Transcriptome analysis revealed differentially expressed genes between mNSCs stably transfected with the C and A allele of rs3617. A: Expression heat map showing the differentially expressed genes (n = 669) between mNSCs stably transfected with the C and A allele of rs3617. B: The top 30 genes showing the most significant expression differences. C‒G: Quantitative PCR (qPCR) validation of RNA-Seq results. Genes marked with red color in B were selected for qPCR verification. These genes included Peg10 (C), Sgce (D), Dbx2 (E), Rasgrp3 (F) and Syt1 (G). Data are represented as mean ± SD, and P values were calculated using two-tailed Student's t-test. Average results of three independent biological replicates are presented (three technical replicates for each biological replicate). ∗, P < 0.05; ∗∗,P < 0.01; ∗∗∗,P < 0.001.H: Gene Ontology (GO) analysis for differentially expressed genes identified by RNA-Seq. The differentially expressed genes were significantly enriched in neurodevelopment-related pathways, including cell adhesion, synapse organization, cell migration, and gliogenesis. I: KEGG analysis for differentially expressed genes identified by RNA-Seq. The differentially expressed genes were significantly enriched in MAPK, ECM-receptor interaction, adhesion, and PI3K-AKT signaling pathways. mNSC, mouse neural stem cell; RNA-Seq, RNA sequencing; KEGG, Kyoto Encyclopedia of Genes and Genomes; SD, standard deviation.
Fig. 7. The working model of rs3617 in schizophrenia pathogenesis. The schizophrenia risk C allele of rs3617 downregulates ITIH3 expression. Lower ITIH3 expression promotes proliferation of NSCs but inhibits their migration. Lower ITIH3 expression promotes differentiation of NSCs into glial cells but inhibits their differentiation into neurons. Single Nucleotide Polymorphism (SNP) rs3617 also alters schizophrenia-associated pathways. These results together suggest that rs3617 may confer risk of schizophrenia by affecting neurodevelopment. NSC, neural stem cell.
Table 1. Association significance between the eight nonsynonymous coding SNPs and schizophrenia in the Chinese population.
SNP CHR:BP Gene A1/A2a Amino acid changeb Freq_Casesc Freq_Controlsd ORe P rs3176443 1:177247854 FAM5B G/C V390L 0.172 0.174 0.987 7.15E-01 rs3617 3:52833805 ITIH3 A/C K315Q 0.393 0.446 0.803 8.36E-16 rs3774729 3:63982082 ATXN7 G/A M862V 0.502 0.486 1.067 1.48E-02 rs950169 15:84706461 ADAMTSL3 T/C I1660T 0.062 0.064 0.978 6.80E-01 rs4584886 17:17896205 LRRC48 C/T R191W 0.126 0.129 0.971 4.68E-01 rs2288920 19:50091798 PRRG2 T/G C116G 0.198 0.208 0.943 7.82E-02 rs20551 22:41548008 EP300 G/A V997I 0.080 0.075 1.070 1.74E-01 rs133335 22:42416056 WBP2NL A/G D121G 0.153 0.162 0.935 6.98E-02 aA1/A2 represents the minor allele/major allele of each SNP. bAmino acid change means different alleles encode different amino acids. cFreq_Cases is the frequency of A1 allele in cases. dFreq_Controls is the frequency of A1 allele in controls. eOR (odds ratio) was based on A1 allele. -
[1] Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E. and McVean, G. A. 2010. A map of human genome variation from population-scale sequencing. Nature 467, 1061-1073. [2] Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J. P., Kavvoura, F. K., Khoury, M. J., Tanzi, R. E. and Bertram, L. 2008. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40, 827-834. [3] Azari, H., Sharififar, S., Rahman, M., Ansari, S. and Reynolds, B. A. 2011. Establishing embryonic mouse neural stem cell culture using the neurosphere assay. J. Vis. Exp. 47, 2457. [4] Barrett, J. C. 2009. Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009, pdb ip71. [5] Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265. [6] Barros, C. S., Franco, S. J. and Muller, U. 2010. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 3, a005108. [7] Bost, F., Diarra-Mehrpour, M. and Martin, J. P. 1998. Inter-alpha-trypsin inhibitor proteoglycan family--a group of proteins binding and stabilizing the extracellular matrix. Eur J Biochem 252, 339-346. [8] Buchanan, B. W., Lloyd, M. E., Engle, S. M. and Rubenstein, E. M. 2016. Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae. J Vis Exp. [9] Buckley, P. F., Miller, B. J., Lehrer, D. S. and Castle, D. J. 2009. Psychiatric comorbidities and schizophrenia. Schizophr Bull 35, 383-402. [10] Chen, C., Meng, Q., Xia, Y., Ding, C., Wang, L., Dai, R., Cheng, L., Gunaratne, P., Gibbs, R. A., Min, S., Coarfa, C., Reid, J. G., Zhang, C., Jiao, C., Jiang, Y., Giase, G., Thomas, A., Fitzgerald, D., Brunetti, T., Shieh, A., Xia, C., Wang, Y., Badner, J. A., Gershon, E. S., White, K. P. and Liu, C. 2019. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci. Transl. Med. 10, eaat8178. [11] Colombatti, A. and Bonaldo, P. 1991. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77, 2305-2315. [12] Diarra-Mehrpour, M., Sarafan, N., Bourguignon, J., Bonnet, F., Bost, F. and Martin, J. P. 1998. Human inter-alpha-trypsin inhibitor heavy chain H3 gene. Genomic organization, promoter analysis, and gene linkage. J Biol Chem 273, 26809-26819. [13] Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M. and Gogos, J. A. 2004. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36, 131-137. [14] Franco, S. J. and Muller, U. 2011. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol 71, 889-900. [15] Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., Georgieva, L., Rees, E., Palta, P., Ruderfer, D. M., Carrera, N., Humphreys, I., Johnson, J. S., Roussos, P., Barker, D. D., Banks, E., Milanova, V., Grant, S. G., Hannon, E., Rose, S. A., Chambert, K., Mahajan, M., Scolnick, E. M., Moran, J. L., Kirov, G., Palotie, A., McCarroll, S. A., Holmans, P., Sklar, P., Owen, M. J., Purcell, S. M. and O'Donovan, M. C. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179-184. [16] Funk, A. J., McCullumsmith, R. E., Haroutunian, V. and Meador-Woodruff, J. H. 2012. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology 37, 896-905. [17] Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J. and Altshuler, D. 2002. The structure of haplotype blocks in the human genome. Science 296, 2225-2229. [18] Global Burden of Disease Study 2013 Collaborators. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743-800. [19] Goff, D. C., Cather, C., Evins, A. E., Henderson, D. C., Freudenreich, O., Copeland, P. M., Bierer, M., Duckworth, K. and Sacks, F. M. 2005. Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. J Clin Psychiatry 66, 183-194; quiz 147, 273-274. [20] Goulding, D. R., Nikolova, V. D., Mishra, L., Zhuo, L., Kimata, K., McBride, S. J., Moy, S. S., Harry, G. J. and Garantziotis, S. 2019. Inter-alpha-inhibitor deficiency in the mouse is associated with alterations in anxiety-like behavior, exploration and social approach. Genes Brain Behav 18, e12505. [21] Himmelfarb, M., Klopocki, E., Grube, S., Staub, E., Klaman, I., Hinzmann, B., Kristiansen, G., Rosenthal, A., Durst, M. and Dahl, E. 2004. ITIH5, a novel member of the inter-alpha-trypsin inhibitor heavy chain family is downregulated in breast cancer. Cancer Lett 204, 69-77. [22] Ishii, K., Kubo, K. I. and Nakajima, K. 2016. Reelin and Neuropsychiatric Disorders. Front Cell Neurosci 10, 229. [23] Ishizuka, K., Kamiya, A., Oh, E. C., Kanki, H., Seshadri, S., Robinson, J. F., Murdoch, H., Dunlop, A. J., Kubo, K., Furukori, K., Huang, B., Zeledon, M., Hayashi-Takagi, A., Okano, H., Nakajima, K., Houslay, M. D., Katsanis, N. and Sawa, A. 2011. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 473, 92-96. [24] Jaffe, A. E., Straub, R. E., Shin, J. H., Tao, R., Gao, Y., Collado-Torres, L., Kam-Thong, T., Xi, H. S., Quan, J., Chen, Q., Colantuoni, C., Ulrich, W. S., Maher, B. J., Deep-Soboslay, A., Cross, A. J., Brandon, N. J., Leek, J. T., Hyde, T. M., Kleinman, J. E. and Weinberger, D. R. 2018. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci 21, 1117-1125. [25] Kim, D., Langmead, B. and Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360. [26] Kirov, G., Rujescu, D., Ingason, A., Collier, D. A., O'Donovan, M. C. and Owen, M. J. 2009. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 35, 851-854. [27] Kong, H., Fan, Y., Xie, J., Ding, J., Sha, L., Shi, X., Sun, X. and Hu, G. 2008. AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 121, 4029-4036. [28] Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., Williams, N. M., Schwab, S. G., Pulver, A. E., Faraone, S. V., Brzustowicz, L. M., Kaufmann, C. A., Garver, D. L., Gurling, H. M., Lindholm, E., Coon, H., Moises, H. W., Byerley, W., Shaw, S. H., Mesen, A., Sherrington, R., O'Neill, F. A., Walsh, D., Kendler, K. S., Ekelund, J., Paunio, T., Lonnqvist, J., Peltonen, L., O'Donovan, M. C., Owen, M. J., Wildenauer, D. B., Maier, W., Nestadt, G., Blouin, J. L., Antonarakis, S. E., Mowry, B. J., Silverman, J. M., Crowe, R. R., Cloninger, C. R., Tsuang, M. T., Malaspina, D., Harkavy-Friedman, J. M., Svrakic, D. M., Bassett, A. S., Holcomb, J., Kalsi, G., McQuillin, A., Brynjolfson, J., Sigmundsson, T., Petursson, H., Jazin, E., Zoega, T. and Helgason, T. 2003. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73, 34-48. [29] Li, J. Y., Liu, J., Manaph, N. P. A., Bobrovskaya, L. and Zhou, X. F. 2017. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res 1668, 46-55. [30] Li, M., Luo, X. J., Xiao, X., Shi, L., Liu, X. Y., Yin, L. D., Diao, H. B. and Su, B. 2011. Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry 168, 1318-1325. [31] Li, M., Wu, D. D., Yao, Y. G., Huo, Y. X., Liu, J. W., Su, B., Chasman, D. I., Chu, A. Y., Huang, T., Qi, L., Zheng, Y. and Luo, X. J. 2016. Recent Positive Selection Drives the Expansion of a Schizophrenia Risk Nonsynonymous Variant at SLC39A8 in Europeans. Schizophr Bull 42, 178-190. [32] Li, X., Luo, Z., Gu, C., Hall, L. S., McIntosh, A. M., Zeng, Y., Porteous, D. J., Hayward, C., Li, M., Yao, Y. G., Zhang, C., Luo, X. J. and The 23andme Research Team. 2018. Common variants on 6q16.2, 12q24.31 and 16p13.3 are associated with major depressive disorder. Neuropsychopharmacology 43, 2146-2153. [33] Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., Yi, Q., Li, C., Li, X., Shen, J., Song, Z., Ji, W., Wang, M., Zhou, J., Chen, B., Liu, Y., Wang, J., Wang, P., Yang, P., Wang, Q., Feng, G., Liu, B., Sun, W., Li, B., He, G., Li, W., Wan, C., Xu, Q., Wen, Z., Liu, K., Huang, F., Ji, J., Ripke, S., Yue, W., Sullivan, P. F., O'Donovan, M. C. and Shi, Y. 2017. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 49, 1576-1583. [34] Li, Z., Xiang, Y., Chen, J., Li, Q., Shen, J., Liu, Y., Li, W., Xing, Q., Wang, Q., Wang, L., Feng, G., He, L., Zhao, X. and Shi, Y. 2015. Loci with genome-wide associations with schizophrenia in the Han Chinese population. Br J Psychiatry 207, 490-494. [35] Liu, J., Li, M., Luo, X. J. and Su, B. 2018. Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophr Res 201, 261-269. [36] Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. [37] Love, M. I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15. [38] Luo, X. J., Diao, H. B., Wang, J. K., Zhang, H., Zhao, Z. M. and Su, B. 2008. Association of haplotypes spanning PDZ-GEF2, LOC728637 and ACSL6 with schizophrenia in Han Chinese. J Med Genet 45, 818-826. [39] Luo, X. J., Mattheisen, M., Li, M., Huang, L., Rietschel, M., Borglum, A. D., Als, T. D., van den Oord, E. J., Aberg, K. A., Mors, O., Mortensen, P. B., Luo, Z., Degenhardt, F., Cichon, S., Schulze, T. G., Nothen, M. M., Su, B., Zhao, Z., Gan, L. and Yao, Y. G. 2015. Systematic integration of brain eQTL and GWAS identifies ZNF323 as a novel schizophrenia risk gene and suggests recent positive selection based on compensatory advantage on pulmonary function. Schizophr Bull 41, 1294-1308. [40] Ma, L., Tang, J., Wang, D., Zhang, W., Liu, W., Liu, X. H., Gong, W., Yao, Y. G. and Chen, X. 2013. Evaluating risk loci for schizophrenia distilled from genome-wide association studies in Han Chinese from Central China. Mol Psychiatry 18, 638-639. [41] Ma, P., Zhao, S., Zeng, W., Yang, Q., Li, C., Lv, X., Zhou, Q. and Mao, B. 2011. Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. Biochem Biophys Res Commun 412, 170-174. [42] Mao, Y., Ge, X., Frank, C. L., Madison, J. M., Koehler, A. N., Doud, M. K., Tassa, C., Berry, E. M., Soda, T., Singh, K. K., Biechele, T., Petryshen, T. L., Moon, R. T., Haggarty, S. J. and Tsai, L. H. 2009. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136, 1017-1031. [43] Miyake, Y., Tanaka, K. and Arakawa, M. 2018. ITIH3 and ITIH4 polymorphisms and depressive symptoms during pregnancy in Japan: the Kyushu Okinawa Maternal and Child Health Study. J Neural Transm (Vienna) 125, 1503-1509. [44] Ng, M. Y., Levinson, D. F., Faraone, S. V., Suarez, B. K., DeLisi, L. E., Arinami, T., Riley, B., Paunio, T., Pulver, A. E., Irmansyah, Holmans, P. A., Escamilla, M., Wildenauer, D. B., Williams, N. M., Laurent, C., Mowry, B. J., Brzustowicz, L. M., Maziade, M., Sklar, P., Garver, D. L., Abecasis, G. R., Lerer, B., Fallin, M. D., Gurling, H. M., Gejman, P. V., Lindholm, E., Moises, H. W., Byerley, W., Wijsman, E. M., Forabosco, P., Tsuang, M. T., Hwu, H. G., Okazaki, Y., Kendler, K. S., Wormley, B., Fanous, A., Walsh, D., O'Neill, F. A., Peltonen, L., Nestadt, G., Lasseter, V. K., Liang, K. Y., Papadimitriou, G. M., Dikeos, D. G., Schwab, S. G., Owen, M. J., O'Donovan, M. C., Norton, N., Hare, E., Raventos, H., Nicolini, H., Albus, M., Maier, W., Nimgaonkar, V. L., Terenius, L., Mallet, J., Jay, M., Godard, S., Nertney, D., Alexander, M., Crowe, R. R., Silverman, J. M., Bassett, A. S., Roy, M. A., Merette, C., Pato, C. N., Pato, M. T., Roos, J. L., Kohn, Y., Amann-Zalcenstein, D., Kalsi, G., McQuillin, A., Curtis, D., Brynjolfson, J., Sigmundsson, T., Petursson, H., Sanders, A. R., Duan, J., Jazin, E., Myles-Worsley, M., Karayiorgou, M. and Lewis, C. M. 2009. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14, 774-785. [45] O'Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M., Carroll, L., Georgieva, L., Dwyer, S., Holmans, P., Marchini, J. L., Spencer, C. C., Howie, B., Leung, H. T., Hartmann, A. M., Moller, H. J., Morris, D. W., Shi, Y., Feng, G., Hoffmann, P., Propping, P., Vasilescu, C., Maier, W., Rietschel, M., Zammit, S., Schumacher, J., Quinn, E. M., Schulze, T. G., Williams, N. M., Giegling, I., Iwata, N., Ikeda, M., Darvasi, A., Shifman, S., He, L., Duan, J., Sanders, A. R., Levinson, D. F., Gejman, P. V., Cichon, S., Nothen, M. M., Gill, M., Corvin, A., Rujescu, D., Kirov, G., Owen, M. J., Buccola, N. G., Mowry, B. J., Freedman, R., Amin, F., Black, D. W., Silverman, J. M., Byerley, W. F. and Cloninger, C. R. 2008. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40, 1053-1055. [46] Oakley, P., Kisely, S., Baxter, A., Harris, M., Desoe, J., Dziouba, A. and Siskind, D. 2018. Increased mortality among people with schizophrenia and other non-affective psychotic disorders in the community: A systematic review and meta-analysis. J Psychiatr Res 102, 245-253. [47] Owen, M. J., O'Donovan, M. C., Thapar, A. and Craddock, N. 2011. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 198, 173-175. [48] Owen, M. J., Sawa, A. and Mortensen, P. B. 2016. Schizophrenia. Lancet 388, 86-97. [49] Palmer, B. A., Pankratz, V. S. and Bostwick, J. M. 2005. The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry 62, 247-253. [50] Pardinas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S. E., Bishop, S., Cameron, D., Hamshere, M. L., Han, J., Hubbard, L., Lynham, A., Mantripragada, K., Rees, E., MacCabe, J. H., McCarroll, S. A., Baune, B. T., Breen, G., Byrne, E. M., Dannlowski, U., Eley, T. C., Hayward, C., Martin, N. G., McIntosh, A. M., Plomin, R., Porteous, D. J., Wray, N. R., Caballero, A., Geschwind, D. H., Huckins, L. M., Ruderfer, D. M., Santiago, E., Sklar, P., Stahl, E. A., Won, H., Agerbo, E., Als, T. D., Andreassen, O. A., Baekvad-Hansen, M., Mortensen, P. B., Pedersen, C. B., Borglum, A. D., Bybjerg-Grauholm, J., Djurovic, S., Durmishi, N., Pedersen, M. G., Golimbet, V., Grove, J., Hougaard, D. M., Mattheisen, M., Molden, E., Mors, O., Nordentoft, M., Pejovic-Milovancevic, M., Sigurdsson, E., Silagadze, T., Hansen, C. S., Stefansson, K., Stefansson, H., Steinberg, S., Tosato, S., Werge, T., Collier, D. A., Rujescu, D., Kirov, G., Owen, M. J., O'Donovan, M. C. and Walters, J. T. R. 2018. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50, 381-389. [51] Peall, K. J., Dijk, J. M., Saunders-Pullman, R., Dreissen, Y. E., van Loon, I., Cath, D., Kurian, M. A., Owen, M. J., Foncke, E. M., Morris, H. R., Gasser, T., Bressman, S., Asmus, F. and Tijssen, M. A. 2015. Psychiatric disorders, myoclonus dystonia and SGCE: an international study. Ann Clin Transl Neurol 3, 4-11. [52] Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. and Salzberg, S. L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290-295. [53] Psychiatric GWAS Consortium Bipolar Disorder Working Group. 2011. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43, 977-983. [54] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J. and Sham, P. C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559-575. [55] Randhawa, P. K., Rylova, S., Heinz, J. Y., Kiser, S., Fried, J. H., Dunworth, W. P., Anderson, A. L., Barber, A. T., Chappell, J. C., Roberts, D. M. and Bautch, V. L. 2011. The Ras activator RasGRP3 mediates diabetes-induced embryonic defects and affects endothelial cell migration. Circ Res 108, 1199-1208. [56] Saha, S., Chant, D. and McGrath, J. 2007. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch Gen Psychiatry 64, 1123-1131. [57] Saha, S., Chant, D., Welham, J. and McGrath, J. 2005. A systematic review of the prevalence of schizophrenia. PLoS Med 2, e141. [58] Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. 2011. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43, 969-976. [59] Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421-427. [60] Senturk, A., Pfennig, S., Weiss, A., Burk, K. and Acker-Palmer, A. 2011. Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature 472, 356-360. [61] Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., Zhang, F., Chen, J., Zhou, G., Ji, W., Li, B., Xu, Y., Liu, D., Wang, P., Yang, P., Liu, B., Sun, W., Wan, C., Qin, S., He, G., Steinberg, S., Cichon, S., Werge, T., Sigurdsson, E., Tosato, S., Palotie, A., Nothen, M. M., Rietschel, M., Ophoff, R. A., Collier, D. A., Rujescu, D., Clair, D. S., Stefansson, H., Stefansson, K., Ji, J., Wang, Q., Li, W., Zheng, L., Zhang, H., Feng, G. and He, L. 2011. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43, 1224-1227. [62] Sullivan, P. F., Kendler, K. S. and Neale, M. C. 2003. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60, 1187-1192. [63] The 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature 526, 68-74. [64] The GTEx Consortium. 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648-660. [65] Ullrich, B., Li, C., Zhang, J. Z., McMahon, H., Anderson, R. G., Geppert, M. and Sudhof, T. C. 1994. Functional properties of multiple synaptotagmins in brain. Neuron 13, 1281-1291. [66] Walker, E., Kestler, L., Bollini, A. and Hochman, K. M. 2004. Schizophrenia: etiology and course. Annu Rev Psychol 55, 401-430. [67] Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., Nord, A. S., Kusenda, M., Malhotra, D., Bhandari, A., Stray, S. M., Rippey, C. F., Roccanova, P., Makarov, V., Lakshmi, B., Findling, R. L., Sikich, L., Stromberg, T., Merriman, B., Gogtay, N., Butler, P., Eckstrand, K., Noory, L., Gochman, P., Long, R., Chen, Z., Davis, S., Baker, C., Eichler, E. E., Meltzer, P. S., Nelson, S. F., Singleton, A. B., Lee, M. K., Rapoport, J. L., King, M. C. and Sebat, J. 2008. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539-543. [68] Whittaker, C. A. and Hynes, R. O. 2002. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13, 3369-3387. [69] Windrem, M. S., Osipovitch, M., Liu, Z., Bates, J., Chandler-Militello, D., Zou, L., Munir, J., Schanz, S., McCoy, K., Miller, R. H., Wang, S., Nedergaard, M., Findling, R. L., Tesar, P. J. and Goldman, S. A. 2017. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell 21, 195-208 e6. [70] Won, S. J., Kim, S. H., Xie, L., Wang, Y., Mao, X. O., Jin, K. and Greenberg, D. A. 2006. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198, 250-259. [71] Yang, C. P., Li, X., Wu, Y., Shen, Q., Zeng, Y., Xiong, Q., Wei, M., Chen, C., Liu, J., Huo, Y., Li, K., Xue, G., Yao, Y. G., Zhang, C., Li, M., Chen, Y. and Luo, X. J. 2018. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun 9, 838. [72] Yang, Z., Zhou, D., Li, H., Cai, X., Liu, W., Wang, L., Chang, H., Li, M. and Xiao, X. 2019. The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Mol Psychiatry 25, 48-66. [73] Yu, G. C., Wang, L. G., Han, Y. Y. and He, Q. Y. 2012. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics-a Journal Of Integrative Biology 16, 284-287. [74] Yu, H., Yan, H., Li, J., Li, Z., Zhang, X., Ma, Y., Mei, L., Liu, C., Cai, L., Wang, Q., Zhang, F., Iwata, N., Ikeda, M., Wang, L., Lu, T., Li, M., Xu, H., Wu, X., Liu, B., Yang, J., Li, K., Lv, L., Ma, X., Wang, C., Li, L., Yang, F., Jiang, T., Shi, Y., Li, T., Zhang, D. and Yue, W. 2017. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol Psychiatry 22, 954-960. [75] Yue, W. H., Wang, H. F., Sun, L. D., Tang, F. L., Liu, Z. H., Zhang, H. X., Li, W. Q., Zhang, Y. L., Zhang, Y., Ma, C. C., Du, B., Wang, L. F., Ren, Y. Q., Yang, Y. F., Hu, X. F., Wang, Y., Deng, W., Tan, L. W., Tan, Y. L., Chen, Q., Xu, G. M., Yang, G. G., Zuo, X. B., Yan, H., Ruan, Y. Y., Lu, T. L., Han, X., Ma, X. H., Cai, L. W., Jin, C., Zhang, H. Y., Yan, J., Mi, W. F., Yin, X. Y., Ma, W. B., Liu, Q., Kang, L., Sun, W., Pan, C. Y., Shuang, M., Yang, F. D., Wang, C. Y., Yang, J. L., Li, K. Q., Ma, X., Li, L. J., Yu, X., Li, Q. Z., Huang, X., Lv, L. X., Li, T., Zhao, G. P., Huang, W., Zhang, X. J. and Zhang, D. 2011. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 43, 1228-1231. [76] Zhang, W., Xiao, M. S., Ji, S., Tang, J., Xu, L., Li, X., Li, M., Wang, H. Z., Jiang, H. Y., Zhang, D. F., Wang, J., Zhang, S., Xu, X. F., Yu, L., Zheng, P., Chen, X. and Yao, Y. G. 2014. Promoter variant rs2301228 on the neural cell adhesion molecule 1 gene confers risk of schizophrenia in Han Chinese. Schizophr Res 160, 88-96. -