留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding

Sukumar Biswas Jiaqi Tian Rong Li Xiaofei Chen Zhijing Luo Mingjiao Chen Xiangxiang Zhao Dabing Zhang Staffan Persson Zheng Yuan Jianxin Shi

Sukumar Biswas, Jiaqi Tian, Rong Li, Xiaofei Chen, Zhijing Luo, Mingjiao Chen, Xiangxiang Zhao, Dabing Zhang, Staffan Persson, Zheng Yuan, Jianxin Shi. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding[J]. Journal of Genetics and Genomics, 2020, 47(5): 273-280. doi: 10.1016/j.jgg.2020.04.004
Citation: Sukumar Biswas, Jiaqi Tian, Rong Li, Xiaofei Chen, Zhijing Luo, Mingjiao Chen, Xiangxiang Zhao, Dabing Zhang, Staffan Persson, Zheng Yuan, Jianxin Shi. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding[J]. Journal of Genetics and Genomics, 2020, 47(5): 273-280. doi: 10.1016/j.jgg.2020.04.004

doi: 10.1016/j.jgg.2020.04.004

Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Fig.  1.  The molecular characteristics of CRISPR/Cas9-induced SD1 mutants in rice. A: Diagram summary of the experimental design and the final output of CRISPR/Cas9-induced SD1 mutants. B: Sequencing results of the identified 20 genotypes in CRISPR/Cas9-induced SD1 T2 plants. WT, wild type; d#, deletion of # bp; i#, insertion of # bp; r#, replacement of # bp; chi, chimera. Ellipsis (…) indicates the occurrence of large chromosomal deletion.C: Summary of off-targets detected in SD1 T2 mutants.

    Fig.  2.  Effects of mutated SD1 alleles on plant height and yield in T3 and T4 generations. A: Height; B: Yield. 9815B, JIAODA138, or HUAIDAO1055 represents different genetic backgrounds. Values are mean ± SD (standard deviation of the mean, n = 10). Mean comparison was carried out using XLSTAT 2018 software, with different letters representing significant difference at P < 0.01.

    Table  1.   Signatures and segregations of CRISPR/Cas9-induced SD1 mutants in rice.

    Line Background T2 T3 T4
    Signature Target genotype Cas9 Mutation segregation Cas9 Mutation segregation Cas9
    Q10 9815B Homozygote i1/i1 + nt nt nt nt
    Q11 9815B Homozygote d7/d7 + nt nt nt nt
    Q13 9815B Homozygote dL/dL + nt nt nt nt
    Q14 9815B Homozygote d7/d7 + nt nt nt nt
    Q16 9815B Heterozygote d1/WT + nt nt nt nt
    Q18 9815B Homozygote i1/i1 + 10i1/i1 10+ 10i1/i1 2+/8–
    Q21 9815B Heterozygote i1/WT + 3i1/i1:5h:2WT 8+/2– 10i1/i1 10–
    Q23 9815B Homozygote d24/d24 + 10d24/d24 10+ 10d24/d24 1+/9–
    Q26 9815B Homozygote i1/i1 10i1/i1 10– nt nt
    Q27 9815B Homozygote d257 + 10d257 10+ 10d257 2+/8-
    Q30 9815B Homozygote i1/i1 + 10i1/i1 9+/1– 10i1/i1 10–
    Q31 9815B Homozygote d63/d63 + 10d63/d63 7+/3– 10d63/d63 10–
    Q34 9815B Homozygote d4/d4 + 10d4/d4 10– nt nt
    Q36 9815B Homozygote d7/d7 10d7/d7 10– nt nt
    Q41 9815B Chimera d263,i194,r1 + 10d263/i194/r1 9+/1– 10d263/i194/r1 10–
    Q46 JIAODA138 Homozygote i1/i1 10i1i1 10– nt nt
    Q48 JIAODA138 Homozygote i1/i1 10i1/i1 10– 10i1/i1 10–
    Q56 JIAODA138 Homozygote i1/i1 + 10i1/i1 6+/4– 10i1/i1 10–
    Q60 JIAODA138 Homozygote i1/i1 + 10i1/i1 4+/6– 10i1/i1 10–
    Q62 JIAODA138 Biallele r1/i1 + 2r1/r1:5r1/i1:3i1/i1 6+/4– 10i1/i1 10–
    Q71 HUAIDAO1055 Homozygote i5/i5 + 10i5/i5 5+/5– 10i5/i5 10–
    Q73 HUAIDAO1055 Homozygote d7/d7 10d7/d7 10– 10d7/d7 10–
    Q74 HUAIDAO1055 Biallele r1/i1 + 3r1/r1:5r1/i1:2i1/i1 7+/3– 10i1/i1 10–
    Q76 HUAIDAO1055 Homozygote d1/d1 10d1/d1 10– 10d1/d1 10–
    Q79 HUAIDAO1055 Homozygote d19/d19 + nt nt nt nt
    Q86 HUAIDAO1055 Chimera d3,i1,r3 + nt nt nt nt
    Q89 HUAIDAO1055 Homozygote d63/d63 + nt nt nt nt
    Q97 HUAIDAO1055 Homozygote d2/d2 + nt nt nt nt
    Q103 HUAIDAO1055 Chimera d382,i1,r1 + nt nt nt nt
    Q107 HUAIDAO1055 Chimera d382,i1,r1 + nt nt nt nt
    Q115 HUAIDAO1055 Chimera WT,d382,i1 + nt nt nt nt
    +, Cas9 detected; –, Cas9 not detected; nt, not tested. d#, deletion with # bp; i#, insertion with # bp; r#, replacement of # bp; h, heterozygous; WT, wild-type; #d, #i, #r, #+, #−, number of lines with identified deletion, insertion, replacement, presence of, and absence of Cas9, respectively.
    下载: 导出CSV

    Table  2.   Signatures and segregations of detected exogenous elements in CRISPR/Cas9-induced SD1 mutants in rice.

    Line T2 T3
    T-DNA element Vector backbone element T-DNA element Vector backbone element
    HPT 35S NOS LacZ HPT 35S NOS LacZ
    Q18 + + + 10+ 10– 10+ 10–
    Q21 + + + 8+/2– 2+/8– 2+/8– 10–
    Q23 + + + 10+ 10– 10+ 10–
    Q26 10– 10– 10– 10–
    Q27 + + + 10+ 10– 10+ 10–
    Q30 + + + 9+/1– 10– 9+/1– 10–
    Q31 + + + + 7+/3– 10– 4+/6– 10–
    Q34 + + + + 10– 10– 10– 10–
    Q36 10– 10– 10– 10–
    Q41 + + + + 9+/1– 6+/4– 9+/1– 10–
    Q46 10– 10– 10– 10–
    Q48 10– 10– 10– 10–
    Q56 + + + 6+/4– 10– 6+/4– 10–
    Q60 + + + 6+/4– 10– 6+/4– 10–
    Q62 + + + 4+/6– 10– 3+/7– 10–
    Q71 + + + 7+/3– 10– 7+/3– 10–
    Q73 10– 10– 10– 10–
    Q74 + + + 7+/3– 1+/9– 6+/4– 10–
    Q76 10– 10– 10– 10–
    + and –, presence and absence of detected corresponding exogenous elements, respectively; nt, not tested; #+, #–, numbers of lines with detected exogenous elements; CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; Cas9, CRISPR-associated 9.
    下载: 导出CSV
  • [1] Araki, M., Ishii, T., 2015. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 20, 145-149.
    [2] Convention on Biological Diversity, 2000. Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. Montreal, Canada. Secretariat of the Convention on Biological Diversity.
    [3] Court of Justice of the European Union, 2018. PRESS RELEASE No 111/18: Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Judgm. Case C-528/16.
    [4] Endo, M., Mikami, M., Toki, S., 2015. Multigene knockout utilizing off-target mutations of the CRISPR/cas9 system in rice. Plant Cell Physiol. 56, 41-47.
    [5] Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., Zhu, J.K., 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 4632-4637.
    [6] Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J.A., Han, F., 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genomics. 43, 37-43.
    [7] Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., Xia, Q., 2015. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87, 99-110.
    [8] Gao, W., Xu, W.T., Huang, K.L., Guo, M. Z., Luo, Y.B., 2018. Risk analysis for genome editing-derived food safety in China. Food Control. 84, 128-137.
    [9] Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824.
    [10] Huang, K., 2017. Safety assessment of genetically modified foods. Springer Singapore.
    [11] Ishizaki, T., 2016. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol. Breed. 36, 165.
    [12] ISAAA, 2019. Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA: Ithaca, NY.
    [13] Jiang, W.Z., Yang, B., Weeks, D.P., 2014. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One. 9, e0099225.
    [14] Jones, H.D., 2015. Regulatory uncertainty over genome editing. Nat. Plants. 1, 1-3.
    [15] Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
    [16] Kuroha, T., Nagai, K., Gamuyao, R., Wang, D.R., Furuta, T., Nakamori, M., Kitaoka, T., Adachi, K., Minami, A., Mori, Y., Mashiguchi, K., Seto, Y., Yamaguchi, S., Kojima, M., Sakakibara, H., Wu, J., Ebana, K., Mitsuda, N., Ohme-Takagi, M., Yanagisawa, S., Yamasaki, M., Yokoyama, R., Nishitani, K., Mochizuki, T., Tamiya, G., McCouch, S.R., Ashikari, M., 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science. 361, 181-186.
    [17] Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., Li, H., 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377.
    [18] Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., Fu, X., 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
    [19] Li, X., Zhou, W., Ren, Y., Tian, X., Lv, T., Wang, Z., Fang, J., Chu, C., Yang, J. and Bu, Q., 2017. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J. Genet.Genomics. 44, 175-178.
    [20] Liang, Z., Zhang, K., Chen, K., Gao, C., 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics. 41, 63-68.
    [21] Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., Chen, L.L., 2017. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant 10 (3), 530–532.
    [22] Lusser, M., Parisi, C., Plan, D., Rodriguez-Cerezo, E., 2012. Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 30, 231-239.
    [23] Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., Zhu, J.K., 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant. 6, 2008-2011.
    [24] Mattei, T.A., 2018. The CRISPR-Cas9 Genome Editing System: Not as precise as previously believed. World Neurosurg. 118, 377-378.
    [25] Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., Qu, L.J., 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236.
    [26] Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4326.
    [27] Peterson, B.A., Haak, D.C., Nishimura, M.T., Teixeira, P.J.P.L., James, S.R., Dangl, J.L., Nimchuk, Z.L., 2016. Genome-wide assessment of efficiency and specificity in crispr/cas9 mediated multiple site targeting in arabidopsis. PLoS One. 11, e0162169.
    [28] Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., Matsuoka, M., 2002. A mutant gibberellin-synthesis gene in rice. Nature. 416, 701-702.
    [29] Schaeffer, S.M., Nakata, P.A., 2015. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 240, 130-142.
    [30] Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395.
    [31] Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T., Zhang, Y., 2018. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 19, 84.
    [32] Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    [33] Wolt, J.D., 2017. Safety, security, and policy considerations for plant genome editing, in: Progress in Molecular Biology and Translational Science. 149, 215-241. Academic Press.
    [34] Wolt, J.D., Wang, K., Sashital, D., Lawrence-Dill, C.J., 2016. Achieving plant CRISPR targeting that limits off-target effects. Plant Genome. 9, 1-8.
    [35] Wolter, F., Puchta, H., 2017. Knocking out consumer concerns and regulator’s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43.
    [36] Wu, J. and Yin, H., 2019. Engineering guide RNA to reduce the off-target effects of CRISPR. J. Genet.Genomics. 46, 523-529.
    [37] Xie, K., Minkenberg, B., Yang, Y., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112, 3570-3575.
    [38] Xu, R.F., Li, H., Qin, R.Y., Li, J., Qiu, C.H., Yang, Y.C., Ma, H., Li, L., Wei, P.C., Yang, J.B., 2015. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, 11491.
    [39] Zhang, Y., Massel, K., Godwin, I.D., Gao, C., 2018a. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210.
    [40] Zhang, Q., Xing, H.L., Wang, Z.P., Zhang, H.Y., Yang, F., Wang, X.C., Chen, Q.J., 2018b. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol. Biol. 96, 445-456.
    [41] Zhang, Hui, Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, Heng, Xu, N., Zhu, J.K., 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807.
    [42] Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., Yang, B., 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42, 10903-10914.
    [43] Zhu, C., Bortesi, L., Baysal, C., Twyman, R.M., Fischer, R., Capell, T., Schillberg, S., Christou, P., 2017. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 22, 38-52.
    [44] Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回