-
Current address: College of Animal Science, South China Agricultural University, 510642, Guangzhou, China.
-
Fig. 1. Pedigree, genome-wide mapping of pathogenic loci, and identification of candidate causative mutation (rs325886172) for anal atresia in the Large White pig inbred population. A: An F3 (backcross) subfamily derived from a cross between one F1 boar (#1033) and one affected F2 sow. Circles and boxes indicate normal sows and boars, respectively. Filled blue boxes and circles represent affected individuals, and the blue oblique line in boxes and circles represent heterozygous individuals. n, the number of pigs. B: Transmission disequilibrium test. The dotted line represents the genome-wide significant threshold. C: The results of haplotype sharing (identical-by-descent) mapping. Red represents pathogenic haplotype 1, yellow represents pathogenic haplotype 2, and the colorless represents other haplotypes. D: Distribution of accordant SNPs across the genome. The accordant SNPs are indicated by red dots, which are consistent with the deduced genotypes of individuals in the backcross subfamily.E: Location of rs325886172, a splice mutation in intron 1 of the GLI2 gene. F: Visualization of RNA sequence reads of GLI2 using the IGV software. Alternative transcripts of affected and unaffected individuals are indicated by a red box. Red and blue lines denote sequence reads of affected and unaffected individuals, respectively. G: Amplification of GLI2 alternative transcripts. M represents DL 500-bp marker. H: Schematic diagram of the GLI2 protein encoded by the normal and alternative transcripts. I–J: GLI2 and CAPN3 mRNA expression levels in the skin of the anus and rectum terminal. ∗, P < 0.05. AA represents affected individuals and WT indicates unaffected individuals. WT, wild-type; IGV, Integrative Genomics Viewer.
Table 1. Genotypes of two candidate causative mutations in 188 unaffected individuals.
Mutation Genotype GLI2 rs325886172 GG AG AA CAPN3 rs332273097 TT 28 16 7 TA 13 50 26 AA 15 29 4 CAPN3 rs1108103493 del/del 30 22 10 del/T 17 47 26 TT 10 26 0 -
[1] Carafoli, E., Molinari, M., 1998. Calpain: a protease in search of a function? Biochem Biophys Res Commun 247, 193-203. [2] Cassini, P., Montironi, A., Botti, S., Hori, T., Okhawa, H., Stella, A., Andersson, L., Giuffra, E., 2005. Genetic analysis of anal atresia in pigs: evidence for segregation at two main loci. Mamm Genome 16, 164-170. [3] Cuschieri, A., 2001. Descriptive epidemiology of isolated anal anomalies: a survey of 4.6 million births in Europe. Am J Med Genet 103, 207-215. [4] De Santa Barbara, P., Williams, J., Goldstein, A.M., Doyle, A.M., Nielsen, C., Winfield, S., Faure, S., Roberts, D.J., 2005. Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev Dyn 234, 312-322. [5] Hori, T., Giuffra, E., Andersson, L., Ohkawa, H., 2001. Mapping loci causing susceptibility to anal atresia in pigs, using a resource pedigree. J Pediatr Surg 36, 1370-1374. [6] Huang, Y., Wang, K.K., 2001. The calpain family and human disease. Trends Mol Med 7, 355-362. [7] Kramerova, I., Beckmann, J.S., Spencer, M.J., 2007. Molecular and cellular basis of calpainopathy (limb girdle muscular dystrophy type 2A). Biochim Biophys Acta 2, 128-144. [8] Kubota, Y., Shimotake, T., Yanagihara, J., Iwai, N., 1998. Development of anorectal malformations using etretinate. J Pediatr Surg 33, 127-129. [9] Mo, R., Kim, J.H., Zhang, J., Chiang, C., Hui, C.C., Kim, P.C., 2001. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159, 765-774. [10] Moretti, D., Del Bello, B., Cosci, E., Biagioli, M., Miracco, C., Maellaro, E., 2009. Novel variants of muscle calpain 3 identified in human melanoma cells: cisplatin-induced changes in vitro and differential expression in melanocytic lesions. Carcinogenesis 30, 960-967. [11] Motoyama, J., Liu, J., Mo, R., Ding, Q., Post, M., Hui, C.C., 1998. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20, 54-57. [12] Qi, B.Q., Beasley, S.W., Williams, A.K., Fizelle, F., 2000. Apoptosis during regression of the tailgut and septation of the cloaca. J Pediatr Surg 35, 1556-1561. [13] Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. [14] Sasaki, Y., Iwai, N., Tsuda, T., Kimura, O., 2004. Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39, 170-173. [15] Scheet, P., Stephens, M., 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644. [16] Squier, M.K., Miller, A.C., Malkinson, A.M., Cohen, J.J., 1994. Calpain activation in apoptosis. J Cell Physiol 159, 229-237. [17] Stockholm, D., Herasse, M., Marchand, S., Praud, C., Roudaut, C., Richard, I., Sebille, A., Beckmann, J.S., 2001. Calpain 3 mRNA expression in mice after denervation and during muscle regeneration. Am J Physiol Cell Physiol 280. [18] Sukegawa, A., Narita, T., Kameda, T., Saitoh, K., Nohno, T., Iba, H., Yasugi, S., Fukuda, K., 2000. The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127, 1971-1980. [19] Thaller, G., Dempfle, L., Hoeschele, I., 1996. Investigation of the inheritance of birth defects in swine by complex segregation analysis. J. Anim. Breed. Genet. 113, 77-92. [20] Wijers, C.H., van Rooij, I.A., Marcelis, C.L., Brunner, H.G., de Blaauw, I., Roeleveld, N., 2014. Genetic and nongenetic etiology of nonsyndromic anorectal malformations: a systematic review. Birth Defects Res C Embryo Today 102, 382-400. [21] Wood, R.J., Levitt, M.A., 2018. Anorectal Malformations. Clin Colon Rectal Surg 31, 61-70. [22] Yalvac, M.E., Amornvit, J., Braganza, C., Chen, L., Hussain, S.A., Shontz, K.M., Montgomery, C.L., Flanigan, K.M., Lewis, S., Sahenk, Z., 2017. Impaired regeneration in calpain-3 null muscle is associated with perturbations in mTORC1 signaling and defective mitochondrial biogenesis. Skelet Muscle 7, 017-0146. -