CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat
-
Abstract: Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops. High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat. The emerging effective genome editing tool, CRISPR/Cas9 system, makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles. To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat, we compared four different RNA polymerase (Pol) III promoters (TaU3p, TaU6p, OsU3p, and OsU6p) and three types of sgRNA scaffold in the protoplast system. We show that theTaU3 promoter-driven optimized sgRNA scaffold was most effective. The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles, whose orthologs, OsNP1 in rice and ZmIPE1 in maize, encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility. Triple homozygous mutations in TaNP1 genes result in complete male sterility. We further demonstrated that any one wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility. Taken together, this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system.
-
Key words:
- Wheat /
- CRISPR/Cas9 /
- Male sterility
-
Fig. 1. Protein sequence alignment of TaNP1 orthologs across grass species. A: The protein sequence alignment of three TaNP1 genes and their orthologs in other grass species using software BioEdit (7.0.9.0). OsNP1, XP_015614422.1; ZmIPE1, ONL99356.1; TaNP1-A1, MT093833; TaNP-B1, MT108234; TaNP1-D1, MT108235; HvNP1, BAK07510.1; BdNP1, XP_003574225.1. B: Protein sequence identity between each other using Clustal Omega (http://www.clustal.org/omega/).
Fig. 2. Expression pattern of TaNP1 genes. A: Expression analysis of three TaNP1 genes by RT-PCR (A, upper) and quantitative RT-PCR (A, lower) in different tissues of wheat. Le&pa, lemma and palea; UM, unicellular microspore stage; BP, bicellular pollen stage; MP, mature pollen stage.ACTIN was used as an internal control. Data are shown as means ± SEM (n = 3). B: In situ hybridization analysis of TaNP1 in anthers of wheat. Sense TaNP1 probe was used as control. Dy, dyad cell; MC, meiotic cell; Msp, microspore; T, tapetum; Tds, tetrads. Bar = 50 μm.
Fig. 3. Optimization of the CRISPR/Cas9 system and target selection for TaNP1 genes in wheat protoplasts. A–C: PCR/RE assay to detect mutations in TaNP1 genes (A, B, D genome) induced by different CRISPR/Cas9 vectors in wheat protoplasts, respectively. A: The mutation rates induced by four different CRISPR/Cas9 vectors, whose sgRNA scaffolds are driven by four different Pol III promoters, were compared. The sequence of target site (TS2) is from a conserved region of threeTaNP1 genes. The BanI restriction site is underlined. B: The mutation rates induced by three different CRISPR/Cas9 vectors were compared. pGR vector contains the most commonly used sgRNA scaffold, pOPGR vector contains the optimized sgRNA scaffold, and pTRGR vector contains a structure of tRNAGly-sgRNA. C: Six target sites sequences were constructed into pOPGR vector. And the mutation rates induced by the six CRISPR/Cas9 vectors were compared. Lane 1, digested PCR amplicons from CRISPR/Cas9 vector transformed protoplasts. Lane 2 and 3, digested and undigested PCR amplicons from WT. TS, target site. Restriction enzyme BanI was used for TS1, TS2, and TS6; BsaHI was used for TS3; DdeI was used for TS4; StyI was used for TS5. Red arrows indicate the mutation bands.
Fig. 4. Targeted mutation of TaNP1 genes using the CRISPR/Cas9 system. A: PCR/RE assay to detect CRISPR/Cas9-induced mutations at TS5 target of TaNP1 genes in 12 representative T0 transgenic wheat plants. Lanes T0-1 to T0-12 show PCR products amplified from transgenic plants with specific primers and digested with StyI. Lanes labeled WT show PCR products amplified from a wild-type control plant with or without StyI digestion. Red arrows indicate the mutation bands. B: Representative mutations in TaNP1 genes from T0 transgenic plants. Green letters indicate the PAM sequences. Restriction enzyme sites are underlined. Deletions and insertions are indicated by dashes and blue letters, respectively. Numbers on the right side indicate types of mutation and numbers of nucleotides involved.
Fig. 5. Morphological comparison between the wild-type and tanp1 mutants at TS5. A: Spikes of wild-type and tanp1 mutants. Bar = 1 cm. B and C: Anthers of wild-type and tanp1 mutants before (B) and after filament elongation (C). Bar = 1 mm. D: Mature pollen grains of wild-type and tanp1 stained with I2-KI. Bar = 200 μm. E: Seeds of wild-type and tanp1 at 20 days after pollination. Bar = 1 mm.
Table 1. Genotypes and seed set for T1 progenies of T0-8.
Genotype Seed set TaNP-A1 TaNP-B1 TaNP-D1 Plants Total seeds Seeds per plant a2a2 b1b1 d1d1 2 0 0 a1a2 b1b1 d2d2 2 0 0 a2a2 b1b1 d1d2 1 0 0 a1a2 b1b1 d1d2 2 0 0 a1a1 b2b2 d1d1 2 252 126 a1a2 b2b2 d1d1 2 266 133 a2a2 b2b2 d1d2 3 448 149 a1a1 b2b2 d1d2 1 27 27 a1a2 b1b2 d1d1 3 406 135 a1a2 b1b2 d2d2 2 232 116 a1a1 b1b2 d2d2 1 38 38 a2a2 b1b2 d2d2 1 286 286 a1a2 b1b2 d1d2 6 598 100 a1a1 b1b2 d1d2 2 107 54 a2a2 b1b2 d1d2 2 268 134 WT WT WT 5a 1130 226 WT, wild-type. aThese plants are wild-type, which are not the progenies of T0-8. -
[1] Adugna, A., Nanda, G.S., Singh, K., Bains, N.S., 2004. A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135, 297-304. [2] Arndell, T., Sharma, N., Langridge, P., Baumann, U., Watson-Haigh, N.S., Whitford, R., 2019. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol. 19, 71-82. [3] Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D.F., Kagale, S., 2018. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 8, 6502-6511. [4] Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J., Fincher, G.B., 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134, 224-236. [5] Chang, Z., Chen, Z., Wang, N., Xie, G., Lu, J., Yan, W., Zhou, J., Tang, X., Deng, X.W., 2016. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. U S A. 113, 14145-14150. [6] Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., Huang, B., 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491. [7] Chen, E., Huang, X., Tian, Z., Wing, R.A., Han, B., 2019. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu Rev Plant Biol. 70, 639-665. [8] Chen, G., Gong, D., Guo, X., Qiu, W., He, Q., 2005. Problems of the hybrid with Chongqing thermo-photo-sensitive male sterility wheat C49S in the plain of Jiang Han. Mailei Zuowu Xuebao 25, 147-148. [9] Chen, X., Zhang, H., Sun, H., Luo, H., Zhao, L., Dong, Z., Yan, S., Zhao, C., Liu, R., Xu, C., Li, S., Chen, H., Jin, W., 2017. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol. 173, 307-325. [10] Christensen, A.H., Quail, P.H., 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213-218. [11] Cigan, A.M., Singh, M., Benn, G., Feigenbutz, L., Kumar, M., Cho, M.J., Svitashev, S., Young, J., 2017. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol. 15, 379-389. [12] Dang, Y., Jia, G., Choi, J., Ma, H., Anaya, E., Ye, C., Shankar, P., Wu, H., 2015. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280-289. [13] De Vries, A.P.H., 1971. Flowering biology of wheat, particularly in view of hybrid seed production - a review. Euphytica 20, 152-170. [14] Duvick, D.N., 2001. Biotechnology in the 1930s: the development of hybrid maize. Nat. Rev. Genet. 2, 69-74. [15] Driscoll, C.J., 1975. Cytogenetic analysis of two chromosomal male-sterility mutants in hexaploid wheat. Aust. J. Biol. Sci. 28, 413-416. [16] Driscoll, C.J., 1977. Registration of Cornerstone male-sterile wheat germplasm. Crop Sci. 17, 190. [17] Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., Zhu, J.K., 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232. [18] Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J.A., Han, F., 2016. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Genomics 43, 37-43. [19] Fossati, A., Ingold, M., 1970. A male sterile mutant in Triticum aestivum. Wheat Inform. Serv. 30, 8-10. [20] Franckowiak, J.D., Maan, S.S., Williams, N.D., 1976. A proposal for hybrid wheat utilizing Aegilops squarrosa L. cytoplasm. Crop Science 16, 725-728. [21] Geyer, M., Albrecht, T., Hartl, L., Mohlar, V., 2018. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps. Mol Genet. Genomics 293, 451-462. [22] Hoagland, A.R., Elliott, F.C., Rasmussen, L.W., 1953. Some histological and morphological effects of maleic hydrazide on spring wheat. Agron. J 45, 468-472. [23] Howells, R.M., Craze, M., Bowden, S., Wallington, E.J., 2018. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol. 18, 215-225. [24] Kihara, H., 1951. Substitution of nucleus and its effects on genome manifestations. Cytologia 16, 177-193. [25] Klindworth, D.L., Williams, N.D., Maan, S.S., 2002. Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat. Crop Sci. 42, 1447-1450. [26] Lawrenson, T., Shorinola, O., Stacey, N., Li, C., OEstergaard, L., Patron, N., Uauy, C., Harwood, W., 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16, 258-270. [27] Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., Gao, C., 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59-67. [28] Li, J., Li, Y., Ma, L., 2019. CRISPR/Cas9-Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. Small Methods 3, 1800473-1800493. [29] Liu, C.G., Wu, Y.W., Zhang, C.L., Ren, S.X., Zhang, Y., 1997. A preliminary study on the effects of Aegilops crassa 6x cytoplasm on the characters of common wheat. J Genet Genomics. 24, 241-247. [30] Liu, C.G., Hou, N., Liu, G.Q., Wu, Y.W., Zhang, C.L., Zhang, Y., 2002. Studies on fertility genetic characters in D2-type CMS lines of common wheat. J Genet. Genomics. 29, 638-645. [31] Liu, Z., Lin, S., Shi, J., Yu, J., Zhu, L., Yang, X., Zhang, D., Liang, W., 2017. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J 91, 263-277. [32] Longin, C.F., Muhleisen, J., Maurer, H.P., Zhang, H., Gowda, M., Reif, J.C., 2012. Hybrid breeding in autogamous cereals. Theor. Appl. Genet. 125, 1087-1096. [33] Murai, K., Tsunewaki, K., 1993. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67, 41-48. [34] Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., Kamoun, S., 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 31, 691-693. [35] Pallotta, M.A., Warner, P., Kouidri, A., Tucker, E.J., Baes, M., Suchecki, R., Watson-Haigh, N., Okada, T., Garcia, M., Sandhu, A., Singh, M., Wolters, P., Albertsen, M.C., Cigan, A.M., Baumann, U., Whitford, R., 2019. Wheat ms5 male-sterility is induced by recessive homoeologous A and D genome non-specific lipid transfer protein. Plant J 99, 673-685. [36] Perez-Prat, E., van Lookeren Campagne, M.M., 2002. Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci. 7, 199-203. [37] Petersen, G., Seberg, O., Yde, M., Berthelsen, K., 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70-82. [38] Pickett, A.A., 1993. Hybrid wheat: results and problems. Adv. Plant Breeding Suppl. 15, 1-259. [39] Pugsleay, T., Oram, R.N., 1959. Genic male sterility in wheat. Aust. Plant Breed Genet. Newsletter 14, 10-11. [40] Sasakuma, T., Maan, S.S., Williams, N.D., 1978. EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci. 18, 850-853. [41] Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., Gao, C., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 31, 686-688. [42] Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410. [43] Singh, S.K., Chatrath, R., Mishra, B., 2010. Perspective of hybrid wheat research: A review. Indian J Agr. Sci. 80, 1013-1027. [44] Singh, M., Kumar, M., Albertsen, M.C., Young, J.K., Cigan, A.M., 2018. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol. 97, 371-383. [45] Singh, M., Kumar, M., Thilges, K., Cho, M.J., Cigan, A.M., 2017. MS26/CYP704B is required for anther and pollen wall development in bread wheat (Triticum aestivum L.) and combining mutations in all three homeologs causes male sterility. PLoS One 12, e0177632. [46] Tsunewaki, K., 1993. Genome-plasmon interaction in wheat. Jpn. J Genet. 68, 1-34. [47] Tucker, E.J., Baumann, U., Kouidri, A., Suchecki, R., Baes, M., Garcia, M., Okada, T., Dong, C., Wu, Y., Sandhu, A., Singh, M., Langridge, P., Wolters, P., Albertsen, M.C., Cigan, A.M., Whitford, R., 2017. Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat. Commun. 8, 869-878. [48] Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1-11. [49] Vats, S., Kumawat, S., Kumar, V., Patil, G.B., Joshi, T., Sonah, H., Sharma, T.R., Deshmukh, R., 2019. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 8, 1386-1424. [50] Voytas, D.F., Gao, C., 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877. [51] Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951. [52] Wang, Z., Li, J., Chen, S., Heng, Y., Chen, Z., Yang, J., Zhou, K., Pei, J., He, H., Deng, X.W., Ma, L., 2017. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. USA. 114, 12614-12619. [53] Whitford, R., Fleury, D., Reif, J.C., Garcia, M., Okada, T., Korzun, V., Langridge, P., 2013. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp. Bot. 64, 5411-5428. [54] Wilson, J.A., Ross, W.M., 1962. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevii cytoplasm. Wheat Inf. Serv. 14, 29-30. [55] Wu, Y., Fox, T.W., Trimnell, M.R., Wang, L., Xu, R.J., Cigan, A.M., Huffman, G.A., Garnaat, C.W., Hershey, H., Albertsen, M.C., 2016. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol. J 14, 1046-1054. [56] Xie, K., Minkenberg, B., Yang, Y., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112, 3570-3575. [57] Yao, Q., Cong, L., Chang, J.L., Li, K.X., Yang, G.X., He, G.Y., 2006. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp. Bot. 57, 3737-3746. [58] Zhang, D., Wu, S., An, X., Xie, K., Dong, Z., Zhou, Y., Xu, L., Fang, W., Liu, S., Liu, S., Zhu, T., Li, J., Rao, L., Zhao, J., Wan, X., 2018a. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol. J 16, 459-471. [59] Zhang, F.T., 2005. Fertility transformation characteristics and restoration of photo-thermosensitive genic male sterile wheat. Master degree dissertation of the Chinese Academy of Agricultural Sciences, China. [60] Zhang, S.J., Zhang, R.Z., Song, G.Q., Gao, J., Li, W., Han, X.D., Chen, M.L., Li, Y.L., Li, G.Y., 2018b. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 18, 302-313. [61] Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., Tang, D., 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714-724. [62] Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B., Li, W., 2019. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. 17, 1623-1635. [63] Zhao, C., 2013. Research and application of hybrid wheat in China. Eng. Sci. 11, 19-21. [64] Zhou, K., Wang, S., Feng, Y., Ji, W., Wang, G., 2008. A new male sterile mutant LZ in wheat (Triticum aestivum L.). Euphytica 159, 403-410. -