留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot

Shiwei Wan Xiu-Fang Xin

Shiwei Wan, Xiu-Fang Xin. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot[J]. 遗传学报, 2022, 49(8): 704-714. doi: 10.1016/j.jgg.2022.04.002
引用本文: Shiwei Wan, Xiu-Fang Xin. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot[J]. 遗传学报, 2022, 49(8): 704-714. doi: 10.1016/j.jgg.2022.04.002
Shiwei Wan, Xiu-Fang Xin. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot[J]. Journal of Genetics and Genomics, 2022, 49(8): 704-714. doi: 10.1016/j.jgg.2022.04.002
Citation: Shiwei Wan, Xiu-Fang Xin. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot[J]. Journal of Genetics and Genomics, 2022, 49(8): 704-714. doi: 10.1016/j.jgg.2022.04.002

Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot

doi: 10.1016/j.jgg.2022.04.002
基金项目: 

Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch (Project number: JCYJ-SHFY-2021-007).

This work was supported by Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, National Key Laboratory of Plant Molecular Genetics

详细信息
    通讯作者:

    Xiu-Fang Xin,E-mail:xinxf@cemps.ac.cn

Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot

Funds: 

Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch (Project number: JCYJ-SHFY-2021-007).

This work was supported by Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, National Key Laboratory of Plant Molecular Genetics

  • 摘要: The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
  • Abdelgawad, Z.A., Khalafaallah, A.A., Abdallah, M.M., 2014. Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agricultural Sciences 5, 1077-1088.
    Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., Dellaporta, S.L., 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323, 262-265.
    Acosta, I.F., Przybyl, M., 2019. Jasmonate signaling during Arabidopsis stamen maturation. Plant Cell Physiol 60, 2648-2659.
    Aleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A.Y., Li, Z., Kinoshita, T., Ecker, J.R., Schroeder, J.I., 2016. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor:a putative link of ABA and JA signaling. Sci. Rep. 6, 28941.
    Ali, M.S., Baek, K.H., 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci. 21, 621.
    An, F.Y., Zhao, Q.O., Ji, Y.S., Li, W.Y., Jiang, Z.Q., Yu, X.C., Zhang, C., Han, Y., He, W.R., Liu, Y.D., et al., 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22, 2384-2401.
    An, L.K., Ahmad, R.M., Ren, H., Qin, J., Yan, Y.X., 2019. Jasmonate signal receptor gene family ZmCOIs restore male fertility and defense response of Arabidopsis mutant coi1-1. J. Plant Growth Regul. 38, 479-493.
    Armengaud, P., Breitling, R., Amtmann, A., 2010. Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol. Plant 3, 390-405.
    Aubert, Y., Widemann, E., Miesch, L., Pinot, F., Heitz, T., 2015. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. J. Exp. Bot. 66, 3879-3892.
    Bertini, L., Palazzi, L., Proietti, S., Pollastri, S., Arrigoni, G., Polverino de Laureto, P., Caruso, C., 2019. Proteomic analysis of MeJA-induced defense responses in rice against wounding. Int. J. Mol. Sci. 20, 2525.
    Boter, M., Golz, J.F., Gimenez-Ibanez, S., Fernandez-Barbero, G., FrancoZorrilla, J.M., Solano, R., 2015. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate. Plant Cell 27, 3160-3174.
    Caarls, L., Elberse, J., Awwanah, M., Ludwig, N.R., de Vries, M., Zeilmaker, T., Van Wees, S.C.M., Schuurink, R.C., Van den Ackerveken, G., 2017. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc. Natl. Acad. Sci. U. S. A. 114, 6388-6393.
    Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu, J., Zhang, D., 2014a. Jasmonic acid regulates spikelet development in rice. Nat. Commun. 5, 3476.
    Cai, X.T., Xu, P., Zhao, P.X., Liu, R., Yu, L.H., Xiang, C.B., 2014b. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat. Commun. 5, 5833.
    Campos, M.L., de Almeida, M., Rossi, M.L., Martinelli, A.P., Litholdo Junior, C.G., Figueira, A., Rampelotti-Ferreira, F.T., Vendramim, J.D., Benedito, V.A., Peres, L.E., 2009. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J. Exp. Bot. 60, 4347-4361.
    Chauvin, A., Lenglet, A., Wolfender, J.L., Farmer, E.E., 2016. Paired hierarchical organization of 13-lipoxygenases in Arabidopsis. Plants (Basel) 5, 16.
    Chen, H., Xue, L., Chintamanani, S., Germain, H., Lin, H., Cui, H., Cai, R., Zuo, J., Tang, X., Li, X., et al., 2009. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21, 2527-2540.
    Chen, K., Li, G.J., Bressan, R.A., Song, C.P., Zhu, J.K., Zhao, Y., 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25-54.
    Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., et al., 2011. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23, 3335-3352.
    Cheng, H., Song, S.S., Xiao, L.T., Soo, H.M., Cheng, Z.W., Xie, D.X., Peng, J.R., 2009. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5, e1000440.
    Chini, A., Fonseca, S., Chico, J.M., Fernandez-Calvo, P., Solano, R., 2009. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77-87.
    Chini, A., Monte, I., Zamarreno, A.M., Hamberg, M., Lassueur, S., Reymond, P., Weiss, S., Stintzi, A., Schaller, A., Porzel, A., et al., 2018. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 14, 171-178.
    Chung, H.S., Howe, G.A., 2009. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIMdomain protein JAZ10 in Arabidopsis. Plant Cell 21, 131-145.
    De Vleesschauwer, D., Seifi, H.S., Filipe, O., Haeck, A., Huu, S.N., Demeestere, K., Hofte, M., 2016. The DELLA protein SLR1 integrates and amplifies salicylic acidand jasmonic acid-dependent innate immunity in rice. Plant Physiol. 170, 1831-1847.
    Deboever, E., Deleu, M., Mongrand, S., Lins, L., Fauconnier, M.L., 2020. Plantpathogen interactions:underestimated roles of phyto-oxylipins. Trends Plant Sci. 25, 22-34.
    Dhakarey, R., Raorane, M.L., Treumann, A., Peethambaran, P.K., Schendel, R.R., Sahi, V.P., Hause, B., Bunzel, M., Henry, A., Kohli, A., et al., 2017. Physiological and proteomic analysis of the rice mutant cpm2 suggests a negative regulatory role of jasmonic acid in drought tolerance. Front. Plant Sci. 8, 1903.
    Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L., Huang, Z., Wang, B., Jiang, H., Huang, T., et al., 2014. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26, 3167-3184.
    Du, M., Zhao, J., Tzeng, D.T.W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., et al., 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1883-1906.
    Dubois, M., Van den Broeck, L., Inze, D., 2018. The pivotal role of ethylene in plant growth. Trends Plant Sci. 23, 311-323.
    Fernandez-Calvo, P., Chini, A., Fernandez-Barbero, G., Chico, J.M., GimenezIbanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., FrancoZorrilla, J.M., et al., 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701-715.
    Feys, B., Benedetti, C.E., Penfold, C.N., Turner, J.G., 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759.
    Figueroa, P., Browse, J., 2012. The Arabidopsis JAZ2 promoter contains a G-Box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins. Plant Cell Physiol. 53, 330-343.
    Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., Solano, R., 2009. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344-350.
    Fonseca, S., Fernandez-Calvo, P., Fernandez, G.M., Diez-Diaz, M., GimenezIbanez, S., Lopez-Vidriero, I., Godoy, M., Fernandez-Barbero, G., Van Leene, J., De Jaeger, G., et al., 2014. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS ONE 9, e86182.
    Fu, J., Wu, H., Ma, S., Xiang, D., Liu, R., Xiong, L., 2017. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front. Plant Sci. 8, 2108.
    Fu, W., Jin, G., Jimenez-Aleman, G.H., Wang, X., Song, J., Li, S., Lou, Y., Li, R., 2021. The jasmonic acid-amino acid conjugates JA-Val and JA-Leu are involved in rice resistance to herbivores. Plant Cell Environ. 45, 262-272.
    Fukumoto, K., Alamgir, K., Yamashita, Y., Mori, I.C., Matsuura, H., Galis, I., 2013. Response of rice to insect elicitors and the role of OsJAR1 in wound and herbivory-induced JA-Ile accumulation. J. Integr. Plant Biol. 55, 775-784.
    Gan, L., Wu, H., Wu, D., Zhang, Z., Guo, Z., Yang, N., Xia, K., Zhou, X., Oh, K., Matsuoka, M., et al., 2015. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci. 241, 238-245.
    Ghorbel, M., Brini, F., Sharma, A., Landi, M., 2021. Role of jasmonic acid in plants:the molecular point of view. Plant Cell Rep. 40, 1471-1494.
    Gimenez-Ibanez, S., Boter, M., Fernandez-Barbero, G., Chini, A., Rathjen, J.P., Solano, R., 2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol. 12, e1001792.
    Gorman, Z., Christensen, S.A., Yan, Y., He, Y., Borrego, E., Kolomiets, M.V., 2020. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Mol. Plant Pathol. 21, 702-715.
    Guan, L., Denkert, N., Eisa, A., Lehmann, M., Sjuts, I., Weiberg, A., Soll, J., Meinecke, M., Schwenkert, S., 2019. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 116, 10568-10575.
    Guo, H.M., Li, H.C., Zhou, S.R., Xue, H.W., Miao, X.X., 2014. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Mol. Plant 7, 1683-1692.
    Hazman, M., Hause, B., Eiche, E., Nick, P., Riemann, M., 2015. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. J. Exp. Bot. 66, 3339-3352.
    He, Y., Borrego, E.J., Gorman, Z., Huang, P.C., Kolomiets, M.V., 2020a. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). Phytochemistry 174, 112334.
    He, Y., Hong, G., Zhang, H., Tan, X., Li, L., Kong, Y., Sang, T., Xie, K., Wei, J., Li, J., et al., 2020b. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4. Plant Cell 32, 2806-2822.
    He, Y., Zhang, H., Sun, Z., Li, J., Hong, G., Zhu, Q., Zhou, X., MacFarlane, S., Yan, F., Chen, J., 2017. Jasmonic acid-mediated defense suppresses brassinosteroidmediated susceptibility to rice black streaked dwarf virus infection in rice. New Phytol. 214, 388-399.
    Hedden, P., Sponsel, V., 2015. A century of gibberellin research. J. Plant Growth Regul. 34, 740-760.
    Hong, G.J., Xue, X.Y., Mao, Y.B., Wang, L.J., Chen, X.Y., 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24, 2635-2648.
    Hou, Y., Wang, Y., Tang, L., Tong, X., Wang, L., Liu, L., Huang, S., Zhang, J., 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience 16, 499-510.
    Houbaert, A., Zhang, C., Tiwari, M., Wang, K., de Marcos Serrano, A., Savatin, D.V., Urs, M.J., Zhiponova, M.K., Gudesblat, G.E., Vanhoutte, I., et al., 2018. POLARguided signalling complex assembly and localization drive asymmetric cell division. Nature 563, 574-578.
    Howe, G.A., Major, I.T., Koo, A.J., 2018. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol. 69, 387-415.
    Hu, J., Huang, J., Xu, H., Wang, Y., Li, C., Wen, P., You, X., Zhang, X., Pan, G., Li, Q., et al., 2020. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog 16, e1008801.
    Hu, Y.R., Jiang, L.Q., Wang, F., Yu, D.Q., 2013. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907-2924.
    Hua, B., Chang, J., Xu, Z., Han, X., Xu, M., Yang, M., Yang, C., Ye, Z., Wu, S., 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytol. 230, 1063-1077.
    Huang, H., Gong, Y., Liu, B., Wu, D., Zhang, M., Xie, D., Song, S., 2020. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC Plant Biol. 20, 64.
    Hui, S., Zhang, M., Hao, M., Yuan, M., 2019. Rice group I GH3 gene family, positive regulators of bacterial pathogens. Plant Signal. Behav. 14, e1588659.
    Hyun, Y., Choi, S., Hwang, H.J., Yu, J., Nam, S.J., Ko, J., Park, J.Y., Seo, Y.S., Kim, E.Y., Ryu, S.B., et al., 2008. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev. Cell 14, 183-192.
    Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K., 2001. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191-2209.
    Jiang, S., Yao, J., Ma, K.W., Zhou, H., Song, J., He, S.Y., Ma, W., 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog. 9, e1003715.
    Jiang, Y.J., Liang, G., Yang, S.Z., Yu, D.Q., 2014. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26, 230-245.
    Ju, L., Jing, Y.X., Shi, P.T., Liu, J., Chen, J.S., Yan, J.J., Chu, J.F., Chen, K.M., Sun, J.Q., 2019. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytol. 223, 246-260.
    Kang, D.J., Seo, Y.J., Lee, J.D., Ishii, R., Kim, K.U., Shin, D.H., Park, S.K., Jang, S.W., Lee, I.J., 2005. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J. Agron. Crop Sci. 191, 273-282.
    Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., Howe, G.A., 2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. U. S. A. 105, 7100-7105.
    Ke, Y., Kang, Y., Wu, M., Liu, H., Hui, S., Zhang, Q., Li, X., Xiao, J., Wang, S., 2019. Jasmonic acid-involved OsEDS1 signaling in rice-bacteria interactions. Rice 12, 25.
    Khan, G.A., Vogiatzaki, E., Glauser, G., Poirier, Y., 2016. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol. 171, 632-644.
    Kim, B., Fujioka, S., Kwon, M., Jeon, J., Choe, S., 2013. Arabidopsis brassinosteroidoverproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to jasmonic acid and pathogen. Plant Cell Rep. 32, 1139-1149.
    Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., Kunkel, B.N., 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26, 509-522.
    Koo, A.J., Cooke, T.F., Howe, G.A., 2011. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. U. S. A. 108, 9298-9303.
    Kunkel, B.N., Johnson, J.M.B., 2021. Auxin plays multiple roles during plantpathogen interactions. Cold Spring Harb. Perspect. Biol. 13, a040022.
    Kurotani, K., Hayashi, K., Hatanaka, S., Toda, Y., Ogawa, D., Ichikawa, H., Ishimaru, Y., Tashita, R., Suzuki, T., Ueda, M., et al., 2015. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol. 56, 779-789.
    Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Van Montagu, M.C., et al., 2011. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. U. S. A. 108, 5891-5896.
    Lee, A., Cho, K., Jang, S., Rakwal, R., Iwahashi, H., Agrawal, G.K., Shim, J., Han, O., 2004. Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem. Biophys. Res. Commun. 318, 734-738.
    Lee, H.Y., Seo, J.S., Cho, J.H., Jung, H., Kim, J.K., Lee, J.S., Rhee, S., Do Choi, Y., 2013. Oryza sativa COI homologues restore jasmonate signal transduction in Arabidopsis coi1-1 mutants. PLoS ONE 8, e52802.
    Lee, S.H., Sakuraba, Y., Lee, T., Kim, K.W., An, G., Lee, H.Y., Paek, N.C., 2015. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. J. Integr. Plant Biol. 57, 562-576.
    Li, J.M., Nam, K.H., 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299-1301.
    Li, L., Zhang, H., Chen, C., Huang, H., Tan, X., Wei, Z., Li, J., Yan, F., Zhang, C., Chen, J., et al., 2021. A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding. Proc. Natl. Acad. Sci. U. S. A. 118 e2016673118.
    Li, L., Zhao, Y.F., McCaig, B.C., Wingerd, B.A., Wang, J.H., Whalon, M.E., Pichersky, E., Howe, G.A., 2004. The tomato homolog of CORONATINEINSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16, 126-143.
    Li, P., Liu, C., Deng, W.H., Yao, D.M., Pan, L.L., Li, Y.Q., Liu, Y.Q., Liang, Y., Zhou, X.P., Wang, X.W., 2019. Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog. 15, e1007607.
    Li, Q., Zheng, J., Li, S., Huang, G., Skilling, S.J., Wang, L., Li, L., Li, M., Yuan, L., Liu, P., 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol. Plant 10, 695e-708.
    Liao, K., Peng, Y.-J., Yuan, L.-B., Dai, Y.-S., Chen, Q.-F., Yu, L.-J., Bai, M.-Y., Zhang, W.-Q., Xie, L.-J., Xiao, S., 2020. Brassinosteroids antagonize jasmonateactivated plant defense responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiol. 182, 1066-1082.
    Liu, H., Timko, M.P., 2021. Jasmonic acid signaling and molecular crosstalk with other phytohormones. Int. J. Mol. Sci. 22, 2914.
    Liu, L., Sonbol, F.M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S.Y., Dong, X., 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7, 13099.
    Lozano-Duran, R., Zipfel, C., 2015. Trade-off between growth and immunity:role of brassinosteroids. Trends Plant Sci. 20, 12-19. Lu, J., Li, J., Ju, H., Liu, X., Erb, M., Wang, X., Lou, Y., 2014. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol. Plant 7, 1670-1682.
    Ma, F., Yang, X., Shi, Z., Miao, X., 2020. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 225, 474-487.
    Major, I.T., Yoshida, Y., Campos, M.L., Kapali, G., Xin, X.-F., Sugimoto, K., Ferreira, D.d.O., He, S.Y., Howe, G.A., 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol. 215, 1533-1547.
    Mao, D., Xin, Y., Tan, Y., Hu, X., Bai, J., Liu, Z.Y., Yu, Y., Li, L., Peng, C., Fan, T., et al., 2019. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc. Natl. Acad. Sci. U. S. A. 116, 3494e3501.
    Miyaji, T., Yamagami, A., Kume, N., Sakuta, M., Osada, H., Asami, T., Arimoto, Y., Nakano, T., 2014. Brassinosteroid-related transcription factor BIL1/BZR1 increases plant resistance to insect feeding. Biosci. Biotech. Bioch. 78, 960-968.
    Mohamed, H.I., Latif, H.H., 2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants 23, 545-556.
    Monte, I., Ishida, S., Zamarreno, A.M., Hamberg, M., Franco-Zorrilla, J.M., GarciaCasado, G., Gouhier-Darimont, C., Reymond, P., Takahashi, K., GarciaMina, J.M., et al., 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14, 480-488.
    Monte, I., Kneeshaw, S., Franco-Zorrilla, J.M., Chini, A., Zamarreno, A.M., GarciaMina, J.M., Solano, R., 2020. An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Curr. Biol. 30, 962-971.
    Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N.P., Jones, J.D., 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650-655.
    Pak, H., Wang, H., Kim, Y., Song, U., Tu, M., Wu, D., Jiang, L., 2021. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.). Plant Biotechnol. J. 19, 365-374.
    Pan, G., Liu, Y., Ji, L., Zhang, X., He, J., Huang, J., Qiu, Z., Liu, D., Sun, Z., Xu, T., et al., 2018. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice. J. Exp. Bot. 69, 4433e4442.
    Pan, J.J., Hu, Y.R., Wang, H.P., Guo, Q., Chen, Y.I., Howe, G.A., Yu, D.Q., 2020. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 32, 3846-3865.
    Pandey, B.K., Verma, L., Prusty, A., Singh, A.P., Bennett, M.J., Tyagi, A.K., Giri, J., Mehra, P., 2021. OsJAZ11 regulates phosphate starvation responses in rice. Planta 254, 8.
    Park, J.H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A., Feyereisen, R., 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1e12.
    Patkar, R.N., Benke, P.I., Qu, Z.W., Chen, Y.Y.C., Yang, F., Swarup, S., Naqvi, N.I., 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11, 733-740.
    Peethambaran, P.K., Glenz, R., Honinger, S., Shahinul Islam, S.M., Hummel, S., Harter, K., Kolukisaoglu, U., Meynard, D., Guiderdoni, E., Nick, P., et al., 2018. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biol. 18, 311.
    Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., Bakker, P.A., 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375.
    Qi, J., Zhou, G., Yang, L., Erb, M., Lu, Y., Sun, X., Cheng, J., Lou, Y., 2011a. The chloroplast-localized phospholipases D a4 and a5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol. 157, 1987-1999.
    Qi, T., Huang, H., Song, S., Xie, D., 2015. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27, 1620-1633.
    Qi, T., Huang, H., Wu, D., Yan, J., Qi, Y., Song, S., Xie, D., 2014. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26, 1118-1133.
    Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., Xie, D., 2011b. The Jasmonate-ZIM-domain proteins interact with the WDRepeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795-1814.
    Qi, X., Guo, S., Wang, D., Zhong, Y., Chen, M., Chen, C., Cheng, D., Liu, Z., An, T., Li, J., et al., 2022. ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. Plant J. 110, 849-862.
    Qiu, Z.B., Guo, J.L., Zhu, A.J., Zhang, L., Zhang, M.M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104, 202-208.
    Ren, C., Han, C., Peng, W., Huang, Y., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D., 2009. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol. 151, 1412-1420.
    Ren, H., Willige, B.C., Jaillais, Y., Geng, S., Park, M.Y., Gray, W.M., Chory, J., 2019. BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling. PLoS Genet. 15, e1007904.
    Riemann, M., Haga, K., Shimizu, T., Okada, K., Ando, S., Mochizuki, S., Nishizawa, Y., Yamanouchi, U., Nick, P., Yano, M., et al., 2013. Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 74, 226-238.
    Sasaki-Sekimoto, Y., Jikumaru, Y., Obayashi, T., Saito, H., Masuda, S., Kamiya, Y., Ohta, H., Shirasu, K., 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. 163, 291-304.
    Schaller, F., Biesgen, C., Müssig, C., Altmann, T., Weiler, E.W., 2000. 12- Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210, 979-984.
    Schilmiller, A.L., Koo, A.J., Howe, G.A., 2007. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol. 143, 812-824.
    Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., Choi, Y.D., 2001. Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonateregulated plant responses. Proc. Natl. Acad. Sci. U. S. A. 98, 4788-4793.
    Seo, J.-S., Joo, J., Kim, M.-J., Kim, Y.-K., Nahm, B.H., Song, S.I., Cheong, J.-J., Lee, J.S., Kim, J.-K., Do Choi, Y., 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65, 907-921.
    Shahzad, A.N., Pitann, B., Ali, H., Qayyum, M.F., Fatima, A., Bakhat, H.F., 2015. Maize genotypes differing in salt resistance vary in jasmonic acid accumulation during the first phase of salt stress. J. Agron. Crop Sci. 201, 443e451.
    Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., et al., 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
    Singh, A.P., Pandey, B.K., Mehra, P., Heitz, T., Giri, J., 2020. OsJAZ9 overexpression modulates jasmonic acid biosynthesis and potassium deficiency responses in rice. Plant Mol. Biol. 104, 397-410.
    Sinha, K., Kaur, R., Singh, N., Kaur, S., Rishi, V., Bhunia, R.K., 2020. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. Phytochemistry 180, 112538.
    Smirnova, E., Marquis, V., Poirier, L., Aubert, Y., Zumsteg, J., Menard, R., Miesch, L., Heitz, T., 2017. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol. Plant 10, 1159-1173.
    Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li, C., Qi, T., et al., 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26, 263-279.
    Song, S., Qi, T., Huang, H., Ren, Q., Wu, D., Chang, C., Peng, W., Liu, Y., Peng, J., Xie, D., 2011. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000-1013.
    Staswick, P.E., Tiryaki, I., Rowe, M.L., 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
    Staswick, P.E., Yuen, G.Y., Lehman, C.C., 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15, 747-754.
    Stenzel, I., Otto, M., Delker, C., Kirmse, N., Schmidt, D., Miersch, O., Hause, B., Wasternack, C., 2012. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana:tissue- and organ-specific promoter activities and in vivo heteromerization. J. Exp. Bot. 63, 6125-6138.
    Sun, J.Q., Xu, Y.X., Ye, S.Q., Jiang, H.L., Chen, Q., Liu, F., Zhou, W.K., Chen, R., Li, X.G., Tietz, O., et al., 2009. Arabidopsis ASA1 is important for jasmonatemediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21, 1495-1511.
    Suza, W.P., Staswick, P.E., 2008. The role of JAR1 in Jasmonoyl-L-isoleucine production during Arabidopsis wound response. Planta 227, 1221-1232.
    Suzuki, G., Lucob-Agustin, N., Kashihara, K., Fujii, Y., Inukai, Y., Gomi, K., 2021. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. Plant Sci. 306, 110853.
    Tamaoki, D., Seo, S., Yamada, S., Kano, A., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K., Gomi, K., 2013. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal. Behav. 8, e24260.
    Tani, T., Sobajima, H., Okada, K., Chujo, T., Arimura, S., Tsutsumi, N., Nishimura, M., Seto, H., Nojiri, H., Yamane, H., 2008. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227, 517-526.
    Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., Browse, J., 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661-665.
    Troufflard, S., Mullen, W., Larson, T.R., Graham, I.A., Crozier, A., Amtmann, A., Armengaud, P., 2010. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol. 10, 172.
    Um, T.Y., Lee, H.Y., Lee, S., Chang, S.H., Chung, P.J., Oh, K.B., Kim, J.K., Jang, G., Choi, Y.D., 2018. Jasmonate Zim-Domain Protein 9 interacts with slender rice 1 to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice. Front. Plant Sci. 9, 1866.
    van Butselaar, T., Van den Ackerveken, G., 2020. Salicylic acid steers the growthimmunity tradeoff. Trends Plant Sci. 25, 566-576.
    Verma, V., Ravindran, P., Kumar, P.P., 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86.
    Wang, C., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F., Wang, X., 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12, 2237-2246.
    Wang, F., Yu, G., Liu, P., 2019. Transporter-mediated subcellular distribution in the metabolism and signaling of jasmonates. Front. Plant Sci. 10, 390.
    Wang, K., Guo, Q., Froehlich, J.E., Hersh, H.L., Zienkiewicz, A., Howe, G.A., Benning, C., 2018. Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell 30, 1006-1022.
    Wang, K.D., Borrego, E.J., Kenerley, C.M., Kolomiets, M.V., 2020a. Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by trichoderma virens in maize. Plant Cell 32, 166-185.
    Wang, Q., Sun, Y., Wang, F., Huang, P.C., Wang, Y., Ruan, X., Ma, L., Li, X., Kolomiets, M.V., Gao, X., 2021a. Transcriptome and oxylipin profiling joint analysis reveals opposite roles of 9-oxylipins and jasmonic acid in maize resistance to gibberella stalk rot. Front. Plant Sci. 12, 699146.
    Wang, S., Li, S., Wang, J., Li, Q., Xin, X.F., Zhou, S., Wang, Y., Li, D., Xu, J., Luo, Z.Q., et al., 2021b. A bacterial kinase phosphorylates OSK1 to suppressstomatal immunity in rice. Nat. Commun. 12, 5479.
    Wang, Y., Hou, Y., Qiu, J., Wang, H., Wang, S., Tang, L., Tong, X., Zhang, J., 2020b. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol. 228, 1336-1353.
    Widemann, E., Miesch, L., Lugan, R., Holder, E., Heinrich, C., Aubert, Y., Miesch, M., Pinot, F., Heitz, T., 2013. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288, 31701-31714.
    Woldemariam, M.G., Ahern, K., Jander, G., Tzin, V., 2018. A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal. Behav. 13, e1422462.
    Wu, D., Qi, T., Li, W.X., Tian, H., Gao, H., Wang, J., Ge, J., Yao, R., Ren, C., Wang, X.B., et al., 2017. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27, 402-415.
    Wu, H., Ye, H., Yao, R., Zhang, T., Xiong, L., 2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232, 1-12.
    Xiao, Y., Chen, Y., Charnikhova, T., Mulder, P.P., Heijmans, J., Hoogenboom, A., Agalou, A., Michel, C., Morel, J.B., Dreni, L., et al., 2014. OsJAR1 is required for JAregulated floret opening and anther dehiscence in rice. Plant Mol. Biol. 86, 19-33.
    Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., Turner, J.G., 1998. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091-1094.
    Xiong, Q., Ma, B., Lu, X., Huang, Y.H., He, S.J., Yang, C., Yin, C.C., Zhao, H., Zhou, Y., Zhang, W.K., et al., 2017. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell 29, 1053-1072.
    Xu, J., Wang, X., Zu, H., Zeng, X., Baldwin, I.T., Lou, Y., Li, R., 2021. Molecular dissection of rice phytohormone signaling involved in resistance to a piercingsucking herbivore. New Phytol. 230, 1639-1652.
    Yan, C., Fan, M., Yang, M., Zhao, J., Zhang, W., Su, Y., Xiao, L., Deng, H., Xie, D., 2018. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1- JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol. Cell 70, 136-149.
    Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., Emery, R.J., Kolomiets, M.V., 2012. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24, 1420-1436.
    Yang, D.L., Yang, Y., He, Z., 2013. Roles of plant hormones and their interplay in rice immunity. Mol. Plant 6, 675-685.
    Yang, D.L., Yao, J., Mei, C.S., Tong, X.H., Zeng, L.J., Li, Q., Xiao, L.T., Sun, T.P., Li, J., Deng, X.W., et al., 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U. S. A. 109, E1192-E1200.
    Yang, L., Teixeira, P.J., Biswas, S., Finkel, O.M., He, Y., Salas-Gonzalez, I., English, M.E., Epple, P., Mieczkowski, P., Dangl, J.L., 2017. Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host Microbe 21, 156-168.
    Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., Qin, Q., Bian, Z., Li, Y., Lan, Y., et al., 2020. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28, 89-103.
    Ye, M., Luo, S.M., Xie, J.F., Li, Y.F., Xu, T., Liu, Y., Song, Y.Y., Zhu-Salzman, K., Zeng, R.S., 2012. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7, e36214.
    You, X., Zhu, S., Zhang, W., Zhang, J., Wang, C., Jing, R., Chen, W., Wu, H., Cai, Y., Feng, Z., et al., 2019. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol. 224, 712-724.
    Yuan, H.M., Liu, W.C., Lu, Y.T., 2017. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 21, 143-155.
    Zeng, J.M., Zhang, T.F., Huangfu, J.Y., Li, R., Lou, Y.G., 2021. Both allene oxide synthases genes are involved in the biosynthesis of herbivore-induced jasmonic acid and herbivore resistance in rice. Plants (Basel) 10, 442.
    Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q., Li, C., 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27, 2814-2828.
    Zhang, C., Lei, Y., Lu, C., Wang, L., Wu, J., 2020a. MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. J. Integr. Plant Biol. 62, 1159-1175.
    Zhang, G., Zhao, F., Chen, L., Pan, Y., Sun, L., Bao, N., Zhang, T., Cui, C.X., Qiu, Z., Zhang, Y., et al., 2019a. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants 5, 491-497.
    Zhang, G.Y., Liu, X., Quan, Z.W., Cheng, S.F., Xu, X., Pan, S.K., Xie, M., Zeng, P., Yue, Z., Wang, W.L., et al., 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30, 549-554.
    Zhang, H., He, Y., Tan, X., Xie, K., Li, L., Hong, G., Li, J., Cheng, Y., Yan, F., Chen, J., et al., 2019b. The dual effect of the brassinosteroid pathway on rice blackstreaked dwarf virus infection by modulating the peroxidase-mediated oxidative burst and plant defense. Mol. Plant Microbe Interact. 32, 685-696.
    Zhang, H., Li, L., He, Y., Qin, Q., Chen, C., Wei, Z., Tan, X., Xie, K., Zhang, R., Hong, G., et al., 2020b. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proc. Natl. Acad. Sci. U. S. A. 117, 9112-9121.
    Zhang, L., Yao, J., Withers, J., Xin, X.F., Banerjee, R., Fariduddin, Q., Nakamura, Y., Nomura, K., Howe, G.A., Boland, W., et al., 2015a. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc. Natl. Acad. Sci. U. S. A. 112, 14354-14359.
    Zhang, S., Wang, S., Xu, Y., Yu, C., Shen, C., Qian, Q., Geisler, M., Jiang de, A., Qi, Y., 2015b. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ. 38, 638-654.
    Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., Yi, C., Guo, H., 2014. Jasmonateactivated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105-1117.
    Zhao, S., Hong, W., Wu, J., Wang, Y., Ji, S., Zhu, S., Wei, C., Zhang, J., Li, Y., 2017. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. Elife 6, e27529.
    Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., Cai, B., Xin, X.F., Liu, X., Zhang, C., et al., 2016. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc. Natl. Acad. Sci. U. S. A. 113, 12850-12855.
    Zhao, Y., Jiang, T., Li, L., Zhang, X., Yang, T., Liu, C., Chu, J., Zheng, B., 2021. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. J. Genet. Genomics 48, 123-133.
    Zheng, X.Y., Spivey, N.W., Zeng, W., Liu, P.P., Fu, Z.Q., Klessig, D.F., He, S.Y., Dong, X., 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11, 587-596.
    Zhou, G., Qi, J., Ren, N., Cheng, J., Erb, M., Mao, B., Lou, Y., 2009. Silencing OsHILOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 60, 638-648.
    Zhou, W., Lozano-Torres, J.L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., Li, C., Scheres, B., 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942-956.
    Zhu, Z., 2014. Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. J. Exp. Bot. 65, 5743-5748.
    Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., et al., 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 12539-12544.
    Zhuo, M., Sakuraba, Y., Yanagisawa, S., 2020. A jasmonate-activated MYC2-Dof2.1- MYC2 transcriptional loop promotes leaf senescence in Arabidopsis. Plant Cell 32, 242-262.
  • 加载中
计量
  • 文章访问数:  784
  • HTML全文浏览量:  283
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-30
  • 录用日期:  2022-04-02
  • 修回日期:  2022-04-01
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回