留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plants response to light stress

Yafei Shi Xiangsheng Ke Xiaoxia Yang Yuhan Liu Xin Hou

Yafei Shi, Xiangsheng Ke, Xiaoxia Yang, Yuhan Liu, Xin Hou. Plants response to light stress[J]. 遗传学报, 2022, 49(8): 735-747. doi: 10.1016/j.jgg.2022.04.017
引用本文: Yafei Shi, Xiangsheng Ke, Xiaoxia Yang, Yuhan Liu, Xin Hou. Plants response to light stress[J]. 遗传学报, 2022, 49(8): 735-747. doi: 10.1016/j.jgg.2022.04.017
Yafei Shi, Xiangsheng Ke, Xiaoxia Yang, Yuhan Liu, Xin Hou. Plants response to light stress[J]. Journal of Genetics and Genomics, 2022, 49(8): 735-747. doi: 10.1016/j.jgg.2022.04.017
Citation: Yafei Shi, Xiangsheng Ke, Xiaoxia Yang, Yuhan Liu, Xin Hou. Plants response to light stress[J]. Journal of Genetics and Genomics, 2022, 49(8): 735-747. doi: 10.1016/j.jgg.2022.04.017

Plants response to light stress

doi: 10.1016/j.jgg.2022.04.017
基金项目: 

D Program of China (2021YFA0909600).

This work was supported by the National Key R&

详细信息
    通讯作者:

    Xin Hou,E-mail:xinhou@whu.edu.cn

Plants response to light stress

Funds: 

D Program of China (2021YFA0909600).

This work was supported by the National Key R&

  • 摘要: Plants require solar energy to grow through oxygenic photosynthesis; however, when light intensity exceeds the optimal range for photosynthesis, it causes abiotic stress and physiological damage in plants. In response to high light stress, plants initiate a series of signal transduction from chloroplasts to whole cells and from locally stressed tissues to the rest of the plant body. These signals trigger a variety of physiological and biochemical reactions intended to mitigate the deleterious effects of high light intensity, such as photodamage and photoinhibition. Light stress protection mechanisms include chloroplastic Reactive oxygen species (ROS) scavenging, chloroplast and stomatal movement, and anthocyanin production. Photosynthetic apparatuses, being the direct targets of photodamage, have also developed various acclimation processes such as thermal energy dissipation through nonphotochemical quenching (NPQ), photorepair of Photosystem II (PSII), and transcriptional regulation of photosynthetic proteins. Fluctuating light is another mild but persistent type of light stress in nature, which unfortunately has been poorly investigated. Current studies, however, suggest that state transitions and cyclic electron transport are the main adaptive mechanisms for mediating fluctuating light stress in plants. Here, we review the current breadth of knowledge regarding physiological and biochemical responses to both high light stress and fluctuating light stress.
  • Albert, N.W., Lewis, D.H., Zhang, H., Irving, L.J., Jameson, P.E., Davies, K.M., 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exp. Bot. 60, 2191-2202.
    Amstutz, C.L., Fristedt, R., Schultink, A., Merchant, S.S., Niyogi, K.K., Malnoe, A., 2020. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants 6, 154-166.
    Ancin, M., Fernandez-San Millan, A., Larraya, L., Morales, F., Veramendi, J., Aranjuelo, I., Farran, I., 2019. Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance. J. Exp. Bot. 70, 1005-1016.
    Anderson, S.A., Satyanarayan, M.B., Wessendorf, R.L., Lu, Y., Fernandez, D.E., 2021. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membranespecific protein targeting in chloroplasts of Arabidopsis. Plant Cell 33, 2812-2833.
    Armbruster, U., Ruhle, T., Kreller, R., Strotbek, C., Zuhlke, J., Tadini, L., Blunder, T., Hertle, A.P., Qi, Y., Rengstl, B., et al., 2013. The photosynthesis affected mutant68-like protein evolved from a PSII assembly factor to mediate assembly of the chloroplast NAD(P)H dehydrogenase complex in
    Arabidopsis. Plant Cell 25, 3926-3943. Armbruster, U., Zuhlke, J., Rengstl, B., Kreller, R., Makarenko, E., Ruhle, T., Schunemann, D., Jahns, P., Weisshaar, B., Nickelsen, J., et al., 2010. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell 22, 3439-3460.
    Barickman, T.C., Kopsell, D.A., Sams, C.E., 2014. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J. Am. Soc. Hortic. Sci. 139, 261-266.
    Bassi, R., Dall'Osto, L., 2021. Dissipation of light energy absorbed in excess:the molecular mechanisms. Annu. Rev. Plant Biol. 72, 47-76.
    Bec Kova, M., Yu, J., Krynicka, V., Kozlo, A., Shao, S., Konik, P., Komenda, J., Murray, J.W., Nixon, P.J., 2017. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 1730.
    Bellafiore, S., Barneche, F., Peltier, G., Rochaix, J.D., 2005. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892-895.
    Bellafiore, S., Ferris, P., Naver, H., Gohre, V., Rochaix, J.D., 2002. Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14, 2303-2314.
    Bhuiyan, N.H., Friso, G., Poliakov, A., Ponnala, L., van Wijk, K.J., 2015. MET1 is a thylakoid-associated TPR protein involved in photosystem II supercomplex formation and repair in Arabidopsis. Plant Cell 27, 262-285.
    Boehm, M., Yu, J., Reisinger, V., Beckova, M., Eichacker, L.A., Schlodder, E., Komenda, J., Nixon, P.J., 2012. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803:implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 3444-3454.
    Bricker, T.M., Roose, J.L., Fagerlund, R.D., Frankel, L.K., Eaton-Rye, J.J., 2012. The extrinsic proteins of Photosystem II. Biochim. Biophys. Acta 1817, 121-142.
    Brown, B.A., Jenkins, G.I., 2008. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 146, 576-588.
    Bryan, S.J., Burroughs, N.J., Evered, C., Sacharz, J., Nenninger, A., Mullineaux, C.W., Spence, E.M., 2011. Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in Synechocystis sp. PCC 6803. PLoS ONE 6, e19625.
    Cazzaniga, S., Osto, L.D., Kong, S.G., Wada, M., Bassi, R., 2013. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 76, 568-579.
    Che, Y., Kusama, S., Matsui, S., Suorsa, M., Nakano, T., Aro, E.M., Ifuku, K., 2020. Arabidopsis PsbP-like protein 1 facilitates the assembly of the photosystem II supercomplexes and optimizes plant fitness under fluctuating light. Plant Cell Physiol. 61, 1168-1180.
    Che, Y.F., Fu, A.G., Hou, X., McDonald, K., Buchanan, B.B., Huang, W.D., Luan, S., 2013. C-terminal processing of reaction center protein D1 is essential for the function and assembly of photosystem II in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 16247-16252.
    Chen, Y.L., Chen, L.J., Chu, C.C., Huang, P.K., Wen, J.R., Li, H.M., 2018. TIC236 links the outer and inner membrane translocons of the chloroplast. Nature 564, 125-129.
    Chen, Z.Y., Chan, P.T., Ho, K.Y., Fung, K.P., Wang, J., 1996. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids 79, 157-163.
    Cifuentes-Esquivel, N., Bou-Torrent, J., Galstyan, A., Gallemi, M., Sessa, G., Salla Martret, M., Roig-Villanova, I., Ruberti, I., Martinez-Garcia, J.F., 2013. The bHLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings. Plant J. 75, 989-1002.
    DalCorso, G, Pesaresi, P, Masiero, S, Aseeva, E, Schü nemann, D, Finazzi, G, Joliot, P, Barbato, R, Leister, D, 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273-285.
    Das, E., Prasad, S., Roy, I., 2021. Saccharomyces cerevisiae Fpr1 functions as a chaperone to inhibit protein aggregation. Int. J. Biol. Macromol. 191, 40-50.
    Demarsy, E., Goldschmidt-Clermont, M., Ulm, R., 2018. Coping with 'dark sides of the sun' through photoreceptor signaling. Trends Plant Sci. 23, 260-271.
    Demmig, B., Bjorkman, O., 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171, 171e184.
    Devireddy, A.R., Zandalinas, S.I., Gomez-Cadenas, A., Blumwald, E., Mittler, R., 2018. Coordinating the overall stomatal response of plants:rapid leaf-to-leaf communication during light stress. Sci. Signal. 11, 518.
    Djakovic-Petrovic, T., de Wit, M., Voesenek, L.A., Pierik, R., 2007. DELLA protein function in growth responses to canopy signals. Plant J. 51, 117-126.
    Dobakova, M., Sobotka, R., Tichy, M., Komenda, J., 2009. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076-1086.
    Exposito-Rodriguez, M., Laissue, P.P., Yvon-Durocher, G., Smirnoff, N., Mullineaux, P.M., 2017. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 8, 49.
    Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J., et al., 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 591-601.
    Fichman, Y., Miller, G., Mittler, R., 2019. Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203-1210.
    Fiorucci, A.S., Fankhauser, C., 2017. Plant strategies for enhancing access to sunlight. Curr. Biol. 27, R931eR940.
    Foyer, C.H., 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134-142.
    Foyer, C.H., Noctor, G., 2009. Redox regulation in photosynthetic organisms:signaling, acclimation, and practical implications. Antioxidants Redox Signal. 11, 861-905.
    Fristedt, R., Trotta, A., Suorsa, M., Nilsson, A.K., Croce, R., Aro, E.M., Lundin, B., 2017. PSB33 sustains photosystem II D1 protein under fluctuating light conditions. J. Exp. Bot. 68, 4281-4293.
    Fristedt, R., Vener, A.V., 2011. High light induced disassembly of photosystem II supercomplexes in Arabidopsis requires STN7-dependent phosphorylation of CP29. PLoS ONE 6, e24565.
    Fu, A., He, Z., Cho, H.S., Lima, A., Buchanan, B.B., Luan, S., 2007. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 104, 15947-15952.
    Gjindali, A., Herrmann, H.A., Schwartz, J.M., Johnson, G.N., Calzadilla, P.I., 2021. A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Front. Plant Sci. 12, 668512.
    Gollan, P.J., Aro, E.M., 2020. Photosynthetic signalling during high light stress and recovery:targets and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190406.
    Gonzalez, A., Zhao, M., Leavitt, J.M., Lloyd, A.M., 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814-827.
    Grieco, M., Tikkanen, M., Paakkarinen, V., Kangasjarvi, S., Aro, E.M., 2012. SteadyState Phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. Plant Physiol. 160, 1896-1910.
    Gururani, M.A., Venkatesh, J., Tran, L.S., 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 8, 1304-1320.
    Haldrup, A., Jensen, P.E., Lunde, C., Scheller, H.V., 2001. Balance of power:a view of the mechanism of photosynthetic state transitions. Trends Plant Sci. 6, 301-305.
    Han, X., Huang, X., Deng, X.W., 2020. The photomorphogenic central repressor COP1:conservation and functional diversification during evolution. Plant Commun 1, 100044.
    Hayami, N., Sakai, Y., Kimura, M., Saito, T., Tokizawa, M., Iuchi, S., Kurihara, Y., Matsui, M., Nomoto, M., Tada, Y., et al., 2015. The responses of Arabidopsis early light-induced protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiol. 169, 840-855.
    Hepworth, C., Wood, W.H.J., Emrich-Mills, T.Z., Proctor, M.S., Casson, S., Johnson, M.P., 2021. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat. Plants 7, 87-98.
    Hersch, M., Lorrain, S., de Wit, M., Trevisan, M., Ljung, K., Bergmann, S., Fankhauser, C., 2014. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 111, 6515e6520.
    Hou, X., Fu, A., Garcia, V.J., Buchanan, B.B., Luan, S., 2015. PSB27:a thylakoid protein enabling Arabidopsis to adapt to changing light intensity. Proc. Natl. Acad. Sci. U. S. A. 112, 1613-1618.
    Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z., Huang, J., 2013. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Mol. Plant 6, 1673-1691.
    Huang, Z., Shen, L., Wang, W., Mao, Z., Yi, X., Kuang, T., Shen, J.R., Zhang, X., Han, G., 2021. Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2. Nat. Commun. 12, 1100.
    Hughes, N.M., Neufeld, H.S., Burkey, K.O., 2005. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol. 168, 575-587.
    Ishikawa, N., Takabayashi, A., Noguchi, K., Tazoe, Y., Yamamoto, H., von Caemmerer, S., Sato, F., Endo, T., 2016. NDH-mediated cyclic electron flow around Photosystem I is crucial for C-4 photosynthesis. Plant Cell Physiol. 57, 2020-2028.
    Ishishita, K., Higa, T., Tanaka, H., Inoue, S., Chung, A., Ushijima, T., Matsushita, T., Kinoshita, T., Nakai, M., Wada, M., et al., 2020. Phototropin2 contributes to the chloroplast avoidance response at the chloroplast-plasma membrane interface. Plant Physiol. 183, 304-316.
    Jarillo, J.A., Gabrys, H., Capel, J., Alonso, J.M., Ecker, J.R., Cashmore, A.R., 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952-954.
    Ji, S., Siegel, A., Shan, S.O., Grimm, B., Wang, P., 2021. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock. Nat. Plants 7, 1420-1432.
    Jiang, X.C., Xu, J., Lin, R., Song, J.N., Shao, S.J., Yu, J.Q., Zhou, Y.H., 2020. Lightinduced HY5 functions as a systemic signal to coordinate the photoprotective response to light fluctuation. Plant Physiol. 184, 1181e1193.
    Jin, H., Fu, M., Duan, Z., Duan, S., Li, M., Dong, X., Liu, B., Feng, D., Wang, J., Peng, L., et al., 2018. LOW PHOTOSYNTHETIC EFFICIENCY 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115, E6075eE6084.
    Jin, H., Liu, B., Luo, L., Feng, D., Wang, P., Liu, J., Da, Q., He, Y., Qi, K., Wang, J., et al., 2014. HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis. Plant Cell 26, 1213-1229.
    Kato, Y., Sakamoto, W., 2018. FtsH Protease in the Thylakoid membrane:physiological functions and the regulation of protease activity. Front. Plant Sci. 9, 855.
    Kato, Y., Sun, X., Zhang, L., Sakamoto, W., 2012. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol. 159, 1428e1439.
    Keller, M.M., Jaillais, Y., Pedmale, U.V., Moreno, J.E., Chory, J., Ballare, C.L., 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67, 195-207.
    Keuskamp, D.H., Pollmann, S., Voesenek, L.A., Peeters, A.J., Pierik, R., 2010. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. U. S. A. 107, 22740-22744.
    Khuong, T.T.H., Robaglia, C., Caffarri, S., 2019. Photoprotection and growth under different lights of Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1). Plant Cell Rep. 38, 741-753.
    Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., Strand, A., 2007. Genomewide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol. 144, 1391-1406.
    Kono, M., Noguchi, K., Terashima, I., 2014. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol. 55, 990-1004.
    Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., Long, S.P., 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857-861.
    Krynicka, V., Georg, J., Jackson, P.J., Dickman, M.J., Hunter, C.N., Futschik, M.E., Hess, W.R., Komenda, J., 2019. Depletion of the FtsH1/3 proteolytic complex suppresses the nutrient stress response in the Cyanobacterium Synechocystis sp strain PCC 6803. Plant Cell 31, 2912-2928.
    Li, S.N., Wang, W.Y., Gao, J.L., Yin, K.Q., Wang, R., Wang, C.C., Petersen, M., Mundy, J., Qiu, J.L., 2016. MYB75 Phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28, 2866-2883.
    Li, X., Wang, H.B., Jin, H.L., 2020. Light signaling-dependent regulation of PSII biogenesis and functional maintenance. Plant Physiol. 183, 1855-1868.
    Li, Z., Wakao, S., Fischer, B.B., Niyogi, K.K., 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239-260.
    Liang, F.C., Kroon, G., McAvoy, C.Z., Chi, C., Wright, P.E., Shan, S.O., 2016. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. Proc. Natl. Acad. Sci. U. S. A. 113, E1615eE1624.
    Lima, A., Lima, S., Wong, J.H., Phillips, R.S., Buchanan, B.B., Luan, S., 2006. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 103, 12631-12636.
    Liu, J., Last, R.L., 2015. MPH1 is a thylakoid membrane protein involved in protecting photosystem II from photodamage in land plants. Plant Signal. Behav. 10, e1076602.
    Liu, J., Last, R.L., 2017. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. Proc. Natl. Acad. Sci. U. S. A. 114, E8110eE8117.
    Lu, Y., Peng, J.J., Yu, Z.B., Du, J.J., Xu, J.N., Wang, X.Y., 2015. Thylakoid membrane oxidoreductase LTO1/AtVKOR is involved in ABA-mediated response to osmotic stress in Arabidopsis. Physiol. Plantarum 154, 28-38.
    Lucinski, R., Misztal, L., Samardakiewicz, S., Jackowski, G., 2011. The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. New Phytol. 192, 74-86.
    Ma, M., Liu, Y., Bai, C., Yang, Y., Sun, Z., Liu, X., Zhang, S., Han, X., Yong, J.W.H., 2021. The physiological functionality of PGR5/PGRL1-dependent cyclic electron transport in sustaining photosynthesis. Front. Plant Sci. 12, 702196.
    Malnoe, A., Wang, F., Girard-Bascou, J., Wollman, F.A., de Vitry, C., 2014. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26, 373-390.
    erilo, E., Jalakas, P., Kollist, H., Brosche, M., 2015. The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. Mol. Plant 8, 657-659.
    Mi, S., Lee, X., Li, X.P., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al., 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789.
    Moore, M., Harrison, M.S., Peterson, E.C., Henry, R., 2000. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 1529-1532.
    Morales, A., Kaiser, E., 2020. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 11, 268.
    Moustaka, J., Tanou, G., Giannakoula, A., Adamakis, I.D.S., Panteris, E., Eleftheriou, E.P., Moustakas, M., 2020. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress. Environ. Exp. Bot. 175.
    Muller, S.M., Wang, S., Telman, W., Liebthal, M., Schnitzer, H., Viehhauser, A., Sticht, C., Delatorre, C., Wirtz, M., Hell, R., et al., 2017. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response. Plant J. 91, 995-1014.
    Nelson, N., Ben-Shem, A., 2004. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971-982. Nickel, C., Soll, J., Schwenkert, S., 2015. Phosphomimicking within the transit peptide of pHCF136 leads to reduced photosystem II accumulation in vivo. FEBS Lett. 589, 1301-1307.
    Nickelsen, J., Rengstl, B., 2013. Photosystem II assembly:from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609-635.
    Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Muller, M., Holzwarth, A.R., Jahns, P., 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466-475.
    Nixon, P.J., Barker, M., Boehm, M., de Vries, R., Komenda, J., 2005. FtsH-mediated repair of the photosystem II complex in response to light stress. J. Exp. Bot. 56, 357-363.
    Nixon, P.J., Michoux, F., Yu, J., Boehm, M., Komenda, J., 2010. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1-16.
    Ouyang, M., Li, X., Zhang, J., Feng, P., Pu, H., Kong, L., Bai, Z., Rong, L., Xu, X., Chi, W., et al., 2020. Liquid-liquid phase transition drives intra-chloroplast cargo sorting. Cell 180, 1144-1159.
    Pastenes, C., Pimentel, P., Lillo, J., 2005. Leaf movements and photoinhibition in relation to water stress in field-grown beans. J. Exp. Bot. 56, 425-433.
    Pedmale, U.V., Huang, S.C., Zander, M., Cole, B.J., Hetzel, J., Ljung, K., Reis, P.A.B., Sridevi, P., Nito, K., Nery, J.R., et al., 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164, 233-245.
    Peng, L., Ma, J., Chi, W., Guo, J., Zhu, S., Lu, Q., Lu, C., Zhang, L., 2006. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 18, 955-969.
    Pesaresi, P., Hertle, A., Pribil, M., Schneider, A., Kleine, T., Leister, D., 2010. Optimizing photosynthesis under fluctuating light:the role of the Arabidopsis STN7 kinase. Plant Signal. Behav. 5, 21-25.
    Pesaresi, P., Pribil, M., Wunder, T., Leister, D., 2011. Dynamics of reversible protein phosphorylation in thylakoids of flowering plants:the roles of STN7, STN8 and TAP38. Biochim. Biophys. Acta 1807, 887-896.
    Pottosin, I., Shabala, S., 2016. Transport across chloroplast membranes:optimizing photosynthesis for adverse environmental conditions. Mol. Plant 9, 356-370.
    Ramel, F., Ksas, B., Akkari, E., Mialoundama, A.S., Monnet, F., Krieger-Liszkay, A., Ravanat, J.L., Mueller, M.J., Bouvier, F., Havaux, M., 2013. Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25, 1445-1462.
    Rantala, M., Lehtimaki, N., Aro, E.M., Suorsa, M., 2016. Downregulation of TAP38/PPH1 enables LHCII hyperphosphorylation in Arabidopsis mutant lacking LHCII docking site in PSI. FEBS Lett. 590, 787-794.
    Rantala, S., Lempiainen, T., Gerotto, C., Tiwari, A., Aro, E.M., Tikkanen, M., 2020. PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition. Biochim. Biophys. Acta Bioenerg. 1861, 148154.
    Reiland, S., Finazzi, G., Endler, A., Willig, A., Baerenfaller, K., Grossmann, J., Gerrits, B., Rutishauser, D., Gruissem, W., Rochaix, J.D., et al., 2011. Comparative phosphoproteome profiling reveals a function of the STN8 kinase in finetuning of cyclic electron flow (CEF). Proc. Natl. Acad. Sci. U. S. A. 108, 12955-12960.
    Rintamaki, E., Martinsuo, P., Pursiheimo, S., Aro, E.M., 2000. Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc. Natl. Acad. Sci. U. S. A. 97, 11644-11649.
    Roach, T., Krieger-Liszkay, A., 2014. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351-362.
    Rohacek, K., Bertrand, M., Moreau, B., Jacquette, B., Caplat, C., MorantManceau, A., Schoefs, B., 2014. Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms:kinetics, components and mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130241.
    Ruban, A.V., 2016. Nonphotochemical chlorophyll fluorescence quenching:mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903-1916.
    Ruban, A.V., Murchie, E.H., 2012. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching:a new approach. Biochim. Biophys. Acta 1817, 977-982.
    Ruhle, T., Dann, M., Reiter, B., Schunemann, D., Naranjo, B., Penzler, J.F., Kleine, T., Leister, D., 2021. PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat. Commun. 12, 3941.
    Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., Deng, X.W., 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642-2647.
    Sanchez-McSweeney, A., Gonzalez-Gordo, S., Aranda-Sicilia, M.N., RodriguezRosales, M.P., Venema, K., Palma, J.M., Corpas, F.J., 2021. Loss of function of the chloroplast membrane K+/H+ antiporters AtKEA1 and AtKEA2 alters the ROS and NO metabolism but promotes drought stress resilience. Plant Physiol. Biochem. 160, 106-119.
    Sato, R., Ohta, H., Masuda, S., 2014. Prediction of respective contribution of linear electron flow and PGR5-dependent cyclic electron flow to non-photochemical quenching induction. Plant Physiol. Biochem. 81, 190-196.
    Schottkowski, M., Ratke, J., Oster, U., Nowaczyk, M., Nickelsen, J., 2009. Pitt, a novel tetratricopeptide repeat protein involved in light-dependent chlorophyll biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. Mol. Plant 2, 1289-1297.
    Serrato, A.J., Rojas-Gonzalez, J.A., Torres-Romero, D., Vargas, P., Merida, A., Sahrawy, M., 2021. Thioredoxins m are major players in the multifaceted lightadaptive response in Arabidopsis thaliana. Plant J. 108, 120-133.
    Shapiguzov, A., Ingelsson, B., Samol, I., Andres, C., Kessler, F., Rochaix, J.D., Vener, A.V., Goldschmidt-Clermont, M., 2010. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 107, 4782-4787.
    Shen, L., Tang, K., Wang, W., Wang, C., Wu, H., Mao, Z., An, S., Chang, S., Kuang, T., Shen, J.-R., et al., 2021. Architecture of the chloroplast PSIeNDH supercomplex in Hordeum vulgare. Nature 601, 649-654.
    Shi, L., Du, L., Wen, J., Zong, X., Zhao, W., Wang, J., Xu, M., Wang, Y., Fu, A., 2021a. Conserved residues in the C-terminal domain affect the structure and function of CYP38 in Arabidopsis. Front. Plant Sci. 12, 630644.
    Shi, Y., Che, Y., Wang, Y., Luan, S., Hou, X., 2021b. Loss of mature D1 leads to compromised CP43 assembly in Arabidopsis thaliana. BMC Plant Biol. 21, 106.
    Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., Park, Y.I., 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 587, 1543e1547.
    Sorin, C., Salla-Martret, M., Bou-Torrent, J., Roig-Villanova, I., Martinez-Garcia, J.F., 2009. ATHB4, a regulator of shade avoidance, modulates hormone response in Arabidopsis seedlings. Plant J. 59, 266-277.
    Strand, D.D., Fisher, N., Kramer, D.M., 2017. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J. Biol. Chem. 292, 11850e11860.
    Sun, X., Ouyang, M., Guo, J., Ma, J., Lu, C., Adam, Z., Zhang, L., 2010. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana. Plant J. 62, 240-249.
    Sun, X., Peng, L., Guo, J., Chi, W., Ma, J., Lu, C., Zhang, L., 2007. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19, 1347-1361.
    Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D.F., Shuman, J.L., Luo, X.Z., Shah, J., Schlauch, K., et al., 2013. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25, 3553-3569.
    Szymanska, R., Slesak, I., Orzechowska, A., Kruk, J., 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165-177.
    Takahashi, S., Badger, M.R., 2011. Photoprotection in plants:a new light on photosystem II damage. Trends Plant Sci. 16, 53-60.
    Takahashi, S., Milward, S.E., Fan, D.Y., Chow, W.S., Badger, M.R., 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol. 149, 1560-1567.
    Takahashi, S., Milward, S.E., Yamori, W., Evans, J.R., Hillier, W., Badger, M.R., 2010. The solar action spectrum of photosystem II damage. Plant Physiol. 153, 988-993.
    Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P., Yano, S., 2006. Irradiance and phenotype:comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57, 343-354.
    Terashima, I., Fujita, T., Inoue, T., Chow, W.S., Oguchi, R., 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light:revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50, 684-697.
    Theis, J., Schroda, M., 2016. Revisiting the photosystem II repair cycle. Plant Signal. Behav. 11, e1218587.
    Tian, Y.N., Zhong, R.H., Wei, J.B., Luo, H.H., Eyal, Y., Jin, H.L., Wu, L.J., Liang, K.Y., Li, Y.M., Chen, S.Z., et al., 2021. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Mol. Plant 14, 1149-1167.
    Toyota, M., Spencer, D., Sawai-Toyota, S., Wang, J.Q., Zhang, T., Koo, A.J., Howe, G.A., Gilroy, S., 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112-1115.
    Umena, Y., Kawakami, K., Shen, J.R., Kamiya, N., 2011. Crystal structure of oxygenevolving photosystem II at a resolution of 1.9 angstrom. Nature 473, 55-65.
    Wada, M., 2013. Chloroplast movement. Plant Sci. 210, 177-182.
    Wada, M., Kong, S.G., 2011. Analysis of chloroplast movement and relocation in Arabidopsis. Methods Mol. Biol. 774, 87-102.
    Walters, R.G., 2005. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 56, 435-447.
    Wei, L., Guo, J., Ouyang, M., Sun, X., Ma, J., Chi, W., Lu, C., Zhang, L., 2010. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J. Biol. Chem. 285, 21391-21398.
    Wu, H.Y., Liu, M.S., Lin, T.P., Cheng, Y.S., 2011. Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen. Plant Physiol. 157, 1015-1025.
    Wu, J., Rong, L., Lin, W., Kong, L., Wei, D., Zhang, L., Rochaix, J.D., Xu, X., 2021. Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7. Plant Physiol. 186, 964-976.
    Xiao, Y.M., Savchenko, T., Baidoo, E.E.K., Chehab, W.E., Hayden, D.M., Tolstikov, V., Corwin, J.A., Kliebenstein, D.J., Keasling, J.D., Dehesh, K., 2012. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525-1535.
    Yamamoto, H., Shikanai, T., 2019. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiol. 179, 588-600.
    Yamori, W., Sakata, N., Suzuki, Y., Shikanai, T., Makino, A., 2011. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J. 68, 966-976.
    Yu, B., Gruber, M.Y., Khachatourians, G.G., Zhou, R., Epp, D.J., Hegedus, D.D., Parkin, I.A., Welsch, R., Hannoufa, A., 2012. Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J. Exp. Bot. 63, 5189-5202.
    Yu, Z.B., Lu, Y., Du, J.J., Peng, J.J., Wang, X.Y., 2014. The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. J. Photochem. Photobiol., B 130, 68-75.
    Zhang, C., Shuai, J., Ran, Z., Zhao, J., Wu, Z., Liao, R., Wu, J., Ma, W., Lei, M., 2020. Structural insights into NDH-1 mediated cyclic electron transfer. Nat. Commun. 11, 888.
    Zhang, D., Kato, Y., Zhang, L., Fujimoto, M., Tsutsumi, N., Sodmergen, Sakamoto, W., 2010. The FtsH protease heterocomplex in Arabidopsis:dispensability of type-B protease activity for proper chloroplast development. Plant Cell 22, 3710-3725.
    Zhang, D., Zhou, G., Liu, B., Kong, Y., Chen, N., Qiu, Q., Yin, H., An, J., Zhang, F., Chen, F., 2011. HCF243 encodes a chloroplast-localized protein involved in the D1 protein stability of the Arabidopsis photosystem II complex. Plant Physiol. 157, 608-619.
    Zheng, T., Li, Y., Lei, W., Qiao, K., Liu, B., Zhang, D., Lin, H., 2020. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Sci. 292, 110355. Zhou, Y., Zhang, D.Z., An, J.X., Yin, H.J., Fang, S., Chu, J.F., Zhao, Y.D., Li, J., 2018. TCP transcription factors regulate shade avoidance via directly mediating the expression of both PHYTOCHROME INTERACTING FACTORs and auxin biosynthetic genes. Plant Physiol. 176, 1850e1861.
    Zhu, S.Q., Chen, M.W., Ji, B.H., Jiao, D.M., Liang, J.S., 2011. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). J. Exp. Bot. 62, 4617-4625.
    Zienkiewicz, M., Ferenc, A., Wasilewska, W., Romanowska, E., 2012. High light stimulates Deg1-dependent cleavage of the minor LHCII antenna proteins CP26 and CP29 and the PsbS protein in Arabidopsis thaliana. Planta 235, 279-288.
  • 加载中
计量
  • 文章访问数:  710
  • HTML全文浏览量:  295
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 录用日期:  2022-04-26
  • 修回日期:  2022-04-13
  • 刊出日期:  2022-05-14

目录

    /

    返回文章
    返回