留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics

Saisai Feng Shunhe Wang DingWu Qu Jing Li Fengwei Tian Leilei Yu Hao Zhang Jianxin Zhao Wei Chen Qixiao Zhai

Saisai Feng, Shunhe Wang, DingWu Qu, Jing Li, Fengwei Tian, Leilei Yu, Hao Zhang, Jianxin Zhao, Wei Chen, Qixiao Zhai. Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics[J]. 遗传学报. doi: 10.1016/j.jgg.2022.11.001
引用本文: Saisai Feng, Shunhe Wang, DingWu Qu, Jing Li, Fengwei Tian, Leilei Yu, Hao Zhang, Jianxin Zhao, Wei Chen, Qixiao Zhai. Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics[J]. 遗传学报. doi: 10.1016/j.jgg.2022.11.001
Saisai Feng, Shunhe Wang, DingWu Qu, Jing Li, Fengwei Tian, Leilei Yu, Hao Zhang, Jianxin Zhao, Wei Chen, Qixiao Zhai. Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2022.11.001
Citation: Saisai Feng, Shunhe Wang, DingWu Qu, Jing Li, Fengwei Tian, Leilei Yu, Hao Zhang, Jianxin Zhao, Wei Chen, Qixiao Zhai. Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2022.11.001

Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics

doi: 10.1016/j.jgg.2022.11.001
基金项目: 

the National Natural Science Foundation of China [U1903205] and Collaborative innovation center of food safety and quality control in Jiangsu Province.

This work was supported by the National Natural Science Foundation of China [No. 32122067 and No. 32021005]

the Natural Science Foundation of Jiangsu Province [BK20200084]

Species- or genus-dependent immunostimulatory effects of gut-derived potential probiotics

Funds: 

the National Natural Science Foundation of China [U1903205] and Collaborative innovation center of food safety and quality control in Jiangsu Province.

This work was supported by the National Natural Science Foundation of China [No. 32122067 and No. 32021005]

the Natural Science Foundation of Jiangsu Province [BK20200084]

  • 摘要:

    The immune regulatory effects of probiotics have been widely recognized to be strain-specific. However it is unknown if there is a species- or genus-dependent manner. In this study, we use an in vitro mesenteric lymph node (MLN) model to systematically evaluate the immunostimulatory effects of gut-derived potential probiotics. The results exhibite an obvious species or genus consensus immune response pattern. RNA-seq shows that T cell-dependent B cell activation and antibody responses may be inherent to this model. Of the five tested genera, Akkermansia spp. and Clostridium butyrium directly activate the immune response in vitro, as indicated by the secretion of interleukin-10. Bifidobacterium spp. and Bacteroides spp. activate immune response with the help of stimuli (anti-CD3 and anti-CD28 antibodies). Lactobacillus spp. blunt the immune response with or without stimuli. Further investigations show that the cell surface protein of A. muciniphila AH39, which may serve as a T cell receptor cognate antigen, might evoke an in vitro immune activation. In vivo, oral administration of A. muciniphila AH39 influences the proportion of T regulatory cells (Tregs) in MLNs and the spleen under homeostasis in both specific pathogen-free and germ-free mice. All these findings indicate the distinct effects of different genera or species of potential gut-derived probiotics on intestinal and systemic immunity.

  • Ansaldo, E., Slayden, L.C., Ching, K.L., Koch, M.A., Wolf, N.K., Plichta, D.R., Brown, E.M., Graham, D.B., Xavier, R.J., Moon, J.J., et al., 2019. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179-1184.
    Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., et al., 2011. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science 331, 337-341.
    Becken, B., Davey, L., Middleton, D.R., Mueller, K.D., Sharma, A., Holmes, Z.C., Dallow, E., Remick, B., Barton, G.M., David, L.A., et al., 2021. Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. mBio 12.
    Blighe, K.,Lun, A., 2021. PCAtools: Everything Principal Components Analysis. R package version 260, https://github.com/kevinblighe/PCAtools.
    Campbell, C., McKenney, P.T., Konstantinovsky, D., Isaeva, O.I., Schizas, M., Verter, J., Mai, C., Jin, W.B., Guo, C.J., Violante, S., et al., 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475-479.
    Cervantes-Barragan, L., Chai, J.N., Tianero, M.D., Luccia, B.D., Ahern, P.P., Merriman, J., Cortez, V.S., Caparon, M.G., Donia, M.S., Gilfillan, S., et al., 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8aa+ T cells. Science 357, 806-810.
    Chai, J.N., Peng, Y., Rengarajan, S., Solomon, B.D., Ai, T.L., Shen, Z., Perry, J.S.A., Knoop, K.A., Tanoue, T., Narushima, S., et al., 2017. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2.
    Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.Bioinformatics 34, i884-i890.
    Chu, H.,Mazmanian, S.K., 2013. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14, 668-675.
    Collado, M.C., Derrien, M., Isolauri, E., de Vos, W.M.,Salminen, S., 2007. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767-7770.
    Guo, X., Li, S., Zhang, J., Wu, F., Li, X., Wu, D., Zhang, M., Ou, Z., Jie, Z., Yan, Q., et al., 2017.Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 18, 800.
    Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., et al., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat.Protoc. 8, 1494-1512
    Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., Ha, S., Nelson, B.N., Kelly, S.P., Wu, L., et al., 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143-148.
    Ivanov, II, Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., et al., 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498.
    Jain, C., Rodriguez, R.L., Phillippy, A.M., Konstantinidis, K.T.,Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat.Commun. 9, 5114.
    Karcher, N., Nigro, E., Punčochář, M., Blanco-Míguez, A., Ciciani, M., Manghi, P., Zolfo, M., Cumbo, F., Manara, S., Golzato, D., et al., 2021. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biology 22.
    Kim, D., Paggi, J.M., Park, C., Bennett, C.,Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
    Kim, J.E., Sharma, A., Sharma, G., Lee, S.Y., Shin, H.S., Rudra, D.,Im, S.-H., 2019.
    Lactobacillus pentosus Modulates Immune Response by Inducing IL-10 Producing Tr1 Cells. Immune Netw. 19, e39.
    Kim, M., Qie, Y., Park, J.,Kim, C.H., 2016. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe 20, 202-214.
    Kuczma, M.P., Szurek, E.A., Cebula, A., Chassaing, B., Jung, Y.-J., Kang, S.-M., Fox, J.G., Stecher, B.,Ignatowicz, L., 2020. Commensal epitopes drive differentiation of colonic Tregs. Science Advances 6, eaaz3186.
    Kuipers, F., de Boer, J.F.,Staels, B., 2020. Microbiome Modulation of the Host Adaptive Immunity through Bile Acid Modification. Cell Metab. 31, 445-447.
    Kwon, H.K., Lee, C.G., So, J.S., Chae, C.S., Hwang, J.S., Sahoo, A., Nam, J.H., Rhee, J.H., Hwang, K.C.,Im, S.H., 2010. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad.Sci. U. S. A. 107, 2159-2164.
    Liao, Y., Smyth, G.K.,Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.
    Love, M.I., Huber, W.,Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    McFarland, L.V., Evans, C.T.,Goldstein, E.J.C., 2018. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. (Lausanne) 5, 124.
    McFarland, L.V., Karakan, T.,Karatas, A., 2021. Strain-specific and outcome-specific efficacy of probiotics for the treatment of irritable bowel syndrome: A systematic review and meta-analysis. EClinicalMedicine 41, 101154.
    Neff, C.P., Rhodes, M.E., Arnolds, K.L., Collins, C.B., Donnelly, J., Nusbacher, N., Jedlicka, P., Schneider, J.M., McCarter, M.D., Shaffer, M., et al., 2016. Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host Microbe 20, 535-547.
    Routy, B., Chatelier, E.L., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M.P., et al., 2018. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91-97.
    Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., Benyamin, F.W., Lei, Y.M., Jabri, B., Alegre, M.L., et al., 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084-1089.
    Song, X., Sun, X., Oh, S.F., Wu, M., Zhang, Y., Zheng, W., Geva-Zatorsky, N., Jupp, R., Mathis,D., Benoist, C., et al., 2020. Microbial bile acid metabolites modulate gut RORgamma(+)
    regulatory T cell homeostasis. Nature 577, 410-415.
    Steimle, A., Michaelis, L., Di Lorenzo, F., Kliem, T., Munzner, T., Maerz, J.K., Schafer, A., Lange, A., Parusel, R., Gronbach, K., et al., 2019. Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Mol. Ther. 27, 1974-1991.
    Verma, R., Lee, C., Jeun, E.-J., Yi, J., Kim, K.S., Ghosh, A., Byun, S., Lee, C.-G., Kang, H.-J., Kim, G.-C., et al., 2018. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Science Immunology 3, eaat6975.
    Vetizou, M., Pitt, J.M., Daillere, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M.P., Duong, C.P.M., et al., 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079-1084.
    Xie, M., Pan, M., Jiang, Y., Liu, X., Lu, W., Zhao, J., Zhang, H.,Chen, W., 2019. groEL Gene-Based Phylogenetic Analysis of Lactobacillus Species by High-Throughput Sequencing.
    Genes (Basel) 10.
    Yang, C., Mogno, I., Contijoch, E.J., Borgerding, J.N., Aggarwala, V., Li, Z., Siu, S., Grasset, E.K., Helmus, D.S., Dubinsky, M.C., et al., 2020. Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host Microbe 27, 467-475.
  • 加载中
计量
  • 文章访问数:  143
  • HTML全文浏览量:  46
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 录用日期:  2022-11-01
  • 修回日期:  2022-10-28
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回