留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections

Xinbin Tang Jiayu Chen Xinya Zhang Xuzhu Liu Zhaoxiang Xie Kaipeng Wei Jianlong Qiu Weiyan Ma Chen Lin Rongqin Ke

Xinbin Tang, Jiayu Chen, Xinya Zhang, Xuzhu Liu, Zhaoxiang Xie, Kaipeng Wei, Jianlong Qiu, Weiyan Ma, Chen Lin, Rongqin Ke. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections[J]. 遗传学报, 2023, 50(9): 652-660. doi: 10.1016/j.jgg.2023.02.004
引用本文: Xinbin Tang, Jiayu Chen, Xinya Zhang, Xuzhu Liu, Zhaoxiang Xie, Kaipeng Wei, Jianlong Qiu, Weiyan Ma, Chen Lin, Rongqin Ke. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections[J]. 遗传学报, 2023, 50(9): 652-660. doi: 10.1016/j.jgg.2023.02.004
Xinbin Tang, Jiayu Chen, Xinya Zhang, Xuzhu Liu, Zhaoxiang Xie, Kaipeng Wei, Jianlong Qiu, Weiyan Ma, Chen Lin, Rongqin Ke. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections[J]. Journal of Genetics and Genomics, 2023, 50(9): 652-660. doi: 10.1016/j.jgg.2023.02.004
Citation: Xinbin Tang, Jiayu Chen, Xinya Zhang, Xuzhu Liu, Zhaoxiang Xie, Kaipeng Wei, Jianlong Qiu, Weiyan Ma, Chen Lin, Rongqin Ke. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections[J]. Journal of Genetics and Genomics, 2023, 50(9): 652-660. doi: 10.1016/j.jgg.2023.02.004

Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections

doi: 10.1016/j.jgg.2023.02.004
基金项目: 

This study was supported by the Natural Science Foundation of Fujian Province (2022J06022), the Quanzhou Science and Technology Plan Project (2021C040R), and the Scientific Research Funds of Huaqiao University.

详细信息
    通讯作者:

    Chen Lin,E-mail:chen.lin@hqu.edu.cn

    Rongqin Ke,E-mail:rke@hqu.edu.cn

Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections

Funds: 

This study was supported by the Natural Science Foundation of Fujian Province (2022J06022), the Quanzhou Science and Technology Plan Project (2021C040R), and the Scientific Research Funds of Huaqiao University.

  • 摘要: Spatial transcriptomics enables the study of localization-indexed gene expression activity in tissues, providing the transcriptional landscape that in turn indicates the potential regulatory networks of gene expression. In situ sequencing (ISS) is a targeted spatial transcriptomic technique, based on padlock probe and rolling circle amplification combined with next-generation sequencing chemistry, for highly multiplexed in situ gene expression profiling. Here, we present improved in situ sequencing (IISS) that exploits a new probing and barcoding approach, combined with advanced image analysis pipelines for high-resolution targeted spatial gene expression profiling. We develop an improved combinatorial probe anchor ligation chemistry using a 2-base encoding strategy for barcode interrogation. The new encoding strategy results in higher signal intensity as well as improved specificity for in situ sequencing, while maintaining a streamlined analysis pipeline for targeted spatial transcriptomics. We show that IISS can be applied to both fresh frozen tissue and formalin-fixed paraffin-embedded tissue sections for single-cell level spatial gene expression analysis, based on which the developmental trajectory and cell-cell communication networks can also be constructed.
  • [1] Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090.
    [2] Chen, Y., McAndrews, K.M.,Kalluri, R., 2021. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol., 18, 792-804.
    [3] Codeluppi, S., Borm, L.E., Zeisel, A., La Manno, G., van Lunteren, J.A., Svensson, C.I.,Linnarsson, S., 2018. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods, 15, 932-935.
    [4] Drmanac, R., Sparks, A.B., Callow, M.J., Halpern, A.L., Burns, N.L., Kermani, B.G., Carnevali, P., Nazarenko, I., Nilsen, G.B., Yeung, G., et al., 2010. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327, 78-81.
    [5] Efremova, M., Vento-Tormo, M., Teichmann, S.A.,Vento-Tormo, R., 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc., 15, 1484-1506.
    [6] Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A.,Liotta, L.A., 1996. Laser capture microdissection. Science, 274, 998-1001.
    [7] Eng, C.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C., Yuan, G.C., et al., 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature, 568, 235-239.
    [8] Jian, F., Yanhong, J., Limeng, W., Guoping, N., Yiqing, T., Hao, L.,Zhaoji, P., 2022. TIMP2 is associated with prognosis and immune infiltrates of gastric and colon cancer. Int. Immunopharm., 110, 109008.
    [9] Ghislat, G., Cheema, A.S., Baudoin, E., Verthuy, C., Ballester, P.J., Crozat, K., Attaf, N., Dong, C., Milpied, P., Malissen, B., et al., 2021. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol., 6, 3570.
    [10] Giorello, M.B., Borzone, F.R., Labovsky, V., Piccioni, F.V.,Chasseing, N.A., 2021. Cancer-associated fibroblasts in the breast tumor microenvironment. J. Mammary Gland Biol. Neoplasia, 26, 135-155.
    [11] Gisina, A., Novikova, S., Kim, Y., Sidorov, D., Bykasov, S., Volchenko, N., Kaprin, A., Zgoda, V., Yarygin, K.,Lupatov, A., 2021. CEACAM5 overexpression is a reliable characteristic of CD133-positive colorectal cancer stem cells. Cancer Biomarkers., 32, 85-98.
    [12] Gyllborg, D., Langseth, C.M., Qian, X., Choi, E., Salas, S.M., Hilscher, M.M., Lein, E.S.,Nilsson, M., 2020. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res., 48, e112.
    [13] Kanzaki, R.,Pietras, K., 2020. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. Cancer Sci., 111, 2708-2717.
    [14] Ke, R., Mignardi, M., Hauling, T.,Nilsson, M., 2016. Fourth generation of next-generation sequencing technologies: promise and consequences. Hum. Mutat., 37, 1363-1367.
    [15] Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C.,Nilsson, M., 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860.
    [16] Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K.,Mardis, E.R., 2013. The next-generation sequencing revolution and its impact on genomics. Cell, 155, 27-38.
    [17] Le, P., Ahmed, N.,Yeo, G.W., 2022. Illuminating RNA biology through imaging. Nat. Cell Biol., 24, 815-824.
    [18] Lee, H., Marco Salas, S., Gyllborg, D.,Nilsson, M., 2022. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci. Rep., 12, 7976.
    [19] Lee, H.-O., Hong, Y., Etlioglu, H.E., Cho, Y.B., Pomella, V., Van den Bosch, B., Vanhecke, J., Verbandt, S., Hong, H., Min, J.-W., et al., 2020. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet., 52, 594-603.
    [20] Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., Jeanty, S.S., Li, C., Amamoto, R., et al., 2014a. Highly multiplexed subcellular RNA sequencing in situ. Science, 343, 1360-1363.
    [21] Lee, S.Y., Kim, J.M., Cho, S.Y., Kim, H.S., Shin, H.S., Jeon, J.Y., Kausar, R., Jeong, S.Y., Lee, Y.S.,Lee, M.A., 2014b. TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem. J., 459, 565-576.
    [22] Lin, C., Jiang, M., Liu, L., Chen, X., Zhao, Y., Chen, L., Hong, Y., Wang, X., Hong, C., Yao, X., et al., 2021. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. Nat. Biotechnol., 61, 116-123.
    [23] Liu, S., Punthambaker, S., Iyer, E.P.R., Ferrante, T., Goodwin, D., Furth, D., Pawlowski, A.C., Jindal, K., Tam, J.M., Mifflin, L., et al., 2021. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res., 49, e58.
    [24] Moses, L.,Pachter, L., 2022. Museum of spatial transcriptomics. Nat. Methods, 19, 534-546.
    [25] Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q., 2020. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv, 2020.2005.2031.125658.
    [26] Qian, X., Harris, K.D., Hauling, T., Nicoloutsopoulos, D., Munoz-Manchado, A.B., Skene, N., Hjerling-Leffler, J.,Nilsson, M., 2020. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods, 17, 101-106.
    [27] Song, G., Xu, S., Zhang, H., Wang, Y., Xiao, C., Jiang, T., Wu, L., Zhang, T., Sun, X., Zhong, L., et al., 2016. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res., 35, 148.
    [28] Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353, 78-82.
    [29] Stringer, C., Wang, T., Michaelos, M.,Pachitariu, M., 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods, 18, 100-106.
    [30] Svedlund, J., Strell, C., Qian, X., Zilkens, K.J.C., Tobin, N.P., Bergh, J., Sieuwerts, A.M.,Nilsson, M., 2019. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine, 48, 212-223.
    [31] Wang, F., Flanagan, J., Su, N., Wang, L.C., Bui, S., Nielson, A., Wu, X., Vo, H.T., Ma, X.J.,Luo, Y., 2012. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn., 14, 22-29.
    [32] Wang, Y.S.,Guo, J., 2021. Multiplexed single-cell in situ RNA profiling. Front. Mol. Biosci., 8, 775410.
    [33] Yu, Y., Zeng, Z., Xie, D., Chen, R., Sha, Y., Huang, S., Cai, W., Chen, W., Li, W., Ke, R., et al., 2021. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci., 24, 1745-1756.
  • 加载中
计量
  • 文章访问数:  298
  • HTML全文浏览量:  119
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-02-02
  • 修回日期:  2023-01-30
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回