留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deciphering spike architecture formation towards yield improvement in wheat

Xumei Luo Yiman Yang Xuelei Lin Jun Xiao

Xumei Luo, Yiman Yang, Xuelei Lin, Jun Xiao. Deciphering spike architecture formation towards yield improvement in wheat[J]. 遗传学报. doi: 10.1016/j.jgg.2023.02.015
引用本文: Xumei Luo, Yiman Yang, Xuelei Lin, Jun Xiao. Deciphering spike architecture formation towards yield improvement in wheat[J]. 遗传学报. doi: 10.1016/j.jgg.2023.02.015
Xumei Luo, Yiman Yang, Xuelei Lin, Jun Xiao. Deciphering spike architecture formation towards yield improvement in wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.02.015
Citation: Xumei Luo, Yiman Yang, Xuelei Lin, Jun Xiao. Deciphering spike architecture formation towards yield improvement in wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.02.015

Deciphering spike architecture formation towards yield improvement in wheat

doi: 10.1016/j.jgg.2023.02.015
基金项目: 

This research was supported by National Key Research and Development Program of China (2021YFD1201500), and the Major Basic Research Program of Shandong Natural Science Foundation (ZR2019ZD15) and the National Natural Sciences Foundation of China (31970529).

详细信息
    通讯作者:

    Xuelei Lin,E-mail addresses:xueleilin@genetics.ac.cn

    Jun Xiao,E-mail addresses:jxiao@genetics.ac.cn

Deciphering spike architecture formation towards yield improvement in wheat

Funds: 

This research was supported by National Key Research and Development Program of China (2021YFD1201500), and the Major Basic Research Program of Shandong Natural Science Foundation (ZR2019ZD15) and the National Natural Sciences Foundation of China (31970529).

  • 摘要: Wheat is the most widely-grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
  • Al-Sheikh Ahmed, S., Zhang, J.J., Ma, W.J., and Dell, B., 2018. Contributions of TaSUTs to grain weight in wheat under drought. Plant Mol. Biol. 98, 333-347.
    Allen, A.M., Barker, G.L., Wilkinson, P., Burridge, A., Winfield, M., Coghill, J., Uauy, C., Griffiths, S., Jack, P., Berry, S., et al., 2013. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol. J. 11, 279-295.
    Alvarez, M.A., Tranquilli, G., Lewis, S., Kippes, N., and Dubcovsky, J., 2016. Genetic and physical mapping of the earliness per se locus Eps-Am 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Funct. Integr. Genomics 16, 365-382.
    Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S.O., Gundlach, H., Hale, I., Mascher, M., Spannagl, M., Wiebe, K., et al., 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97.
    Avni, R., Lux, T., Minz-Dub, A., Millet, E., Sela, H., Distelfeld, A., Deek, J., Yu, G.T., Steuernagel, B., Pozniak, C., et al., 2022. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J. 110, 179-192.
    Baccin, C., Al-Sabah, J., Velten, L., Helbling, P.M., Grunschlager, F., Hernandez-Malmierca, P., Nombela-Arrieta, C., Steinmetz, L.M., Trumpp, A., and Haas, S., 2020. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38-48.
    Backhaus, A.E., Lister, A., Tomkins, M., Adamski, N.M., Simmonds, J., Macaulay, I., Morris, R.J., Haerty, W., and Uauy, C., 2022. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. Plant Physiol. 189, 1536-1552.
    Bai, X.F., Huang, Y., Hu, Y., Liu, H.Y., Zhang, B., Smaczniak, C., Hu, G., Han, Z.M., and Xing, Y.Z., 2017. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat. Plants 3, 885-893.
    Basavaraddi, P.A., Savin, R., Wingen, L.U., Bencivenga, S., Przewieslik-Allen, A.M., Griffiths, S., and Slafer, G.A., 2021. Interactions between two QTLs for time to anthesis on spike development and fertility in wheat. Sci. Rep. 11, 2451.
    Basile, S.M.L., Ramirez, I.A., Crescente, J.M., Conde, M.B., Demichelis, M., Abbate, P., Rogers, W.J., Pontaroli, A.C., Helguera, M., and Vanzetti, L.S., 2019. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol. 19.
    Bauer, E., Schmutzer, T., Barilar, I., Mascher, M., Gundlach, H., Martis, M.M., Twardziok, S.O., Hackauf, B., Gordillo, A., Wilde, P., et al., 2017. Towards a whole-genome sequence for rye(Secale cereale L.). Plant J. 89, 853-869.
    Boden, S.A., Cavanagh, C., Cullis, B.R., Ramm, K., Greenwood, J., Jean Finnegan, E., Trevaskis, B., and Swain, S.M., 2015. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants 1, 14016.
    Bowman, B.C., Chen, J., Zhang, J., Wheeler, J., Wang, Y., Zhao, W., Nayak, S., Heslot, N., Bockelman, H., and Bonman, J.M., 2015. Evaluating grain yield in spring wheat with canopy spectral reflectance. Crop Sci. 55, 1881-1890.
    Cao, J., Liu, K.Y., Song, W.J., Zhang, J.N., Yao, Y.Y., Xin, M.M., Hu, Z.R., Peng, H.R., Ni, Z.F., Sun, Q.X., et al., 2021a. Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253, 44.
    Cao, P., Fan, W., Li, P., and Hu, Y., 2021b. Genome-wide profiling of long noncoding RNAs involved in wheat spike development. BMC Genomics 22, 493.
    Chen, A., and Dubcovsky, J., 2012. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 8, e1003134.
    Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., and Klukas, C., 2014.
    Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26, 4636-4655.
    Chen, D., Zhang, J.P, Wang, J.S., Yang, X.M., Liu, W.H., Gao, A.N., Li, X.Q., and Li, L.H., 2012. Inheritance and availability of high grain number per spike in wwo wheat germplasm lines. J. Integr. Agric. 11, 1409-1416.
    Chen, D.J., Yan, W.H., Fu, L.Y., and Kaufmann, K., 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 9.
    Chen, Y.M., Song, W.J., Xie, X.M., Wang, Z.H., Guan, P.F., Peng, H.R., Jiao, Y.N., Ni, Z.F., Sun, Q.X., and Guo, W.L., 2020a. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae Tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694-1708.
    Chen, Z.L., and Gallavotti, A., 2021. Improving architectural traits of maize inflorescences. Mol. Breed. 41, 1-13.
    Chen, Z.Y., Cheng, X.J., Chai, L.L., Wang, Z.H., Du, D.J., Wang, Z.H., Bian, R.L., Zhao, A.J., Xin, M.M., Guo, W.L., et al., 2020b. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 133, 1825-1838.
    Chen, Z.Y., Ke, W.S., He, F., Chai, L.L., Cheng, X.J., Xu, H.W., Wang, X.B., Du, D.J., Zhao, Y.D., Chen, X.Y., et al., 2022. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol. J. 20, 920-933.
    Chuck, G., Muszynski, M., Kellogg, E., Hake, S., and Schmidt, R.J., 2002. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298, 1238-1241.
    Cui, F., Ding, A., Li, J., Zhao, C., Wang, L., Wang, X., Qi, X., Li, X., Li, G., Gao, J., et al., 2011. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186, 177-192.
    Das, M.K., Bai, G., Mujeeb-Kazi, A., Rajaram, S., 2015. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop Evol. 63, 1285-1296.
    Debernardi, J.M., Lin, H., Chuck, G., Faris, J.D., and Dubcovsky, J., 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144, 1966-1975.
    Debernardi, J.M., Greenwood, J.R., Jean Finnegan, E., Jernstedt, J., and Dubcovsky, J., 2020. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. Plant J. 101, 171-187.
    Demidchik, V.V., Shashko, A.Y., Bandarenka, U.Y., Smolikova, G.N., Przhevalskaya, D.A., Charnysh, M.A., Pozhvanov, G.A., Barkosvkyi, A.V., Smolich, I.I., Sokolik, A.I., et al., 2020. Plant phenomics:fundamental bases, software and hardware platforms, and machine learning. Russ. J. Plant Physiol. 67, 397-412.
    Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F., 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935-1940.
    Dixon, L.E., Greenwood, J.R., Bencivenga, S., Zhang, P., Cockram, J., Mellers, G., Ramm, K., Cavanagh, C., Swain, S.M., and Boden, S.A., 2018. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30, 563-581.
    Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Murat, F., Chosson, A., Watanabe, N., Prat, E., Gautier, N., et al., 2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 167, 189-199.
    Doebley, J.F., Gaut, B.S., and Smith, B.D., 2006. The molecular genetics of crop domestication. Cell 127, 1309-1321.
    Dorrity, M.W., Alexandre, C.M., Hamm, M.O., Vigil, A.-L., Fields, S., Queitsch, C., and Cuperus, J.T., 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12.
    Du, D.J., Zhang, D.X., Yuan, J., Feng, M., Li, Z.J., Wang, Z.W., Zhang, Z.H., Li, X.T., Ke, W.S., Li, R.H., et al., 2021. FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytol. 231, 814-833.
    Faricelli, M.E., Valarik, M., and Dubcovsky, J., 2010. Control of flowering time and spike development in cereals:the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct. Integr. Genomics 10, 293-306.
    Faris, J.D., 2014. Wheat Domestication:Key to agricultural revolution past and future. In:Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. 439-464.
    Faris, J.D., and Gill, B.S., 2002. Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45, 706-718.
    Finnegan, E.J., Ford, B., Wallace, X., Pettolino, F., Griffin, P.T., Schmitz, R.J., Zhang, P., Barrero, J.M., Hayden, M.J., Boden, S.A., et al., 2018. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 41, 1346-1360.
    Flint-Garcia, S.A., 2013. Genetics and consequences of crop domestication. J. Agric. Food Chem. 61, 8267-8276.
    Furbank, R.T., and Tester, M., 2011. Phenomics——technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635-644.
    Gao, C.X., 2021. Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
    Gao, L., Koo, D.H., Juliana, P., Rife, T., Singh, D., Lemes da Silva, C., Lux, T., Dorn, K.M., Clinesmith, M., Silva, P., et al., 2021. The Aegilops ventricosa 2N(v)S segment in bread wheat:cytology, genomics and breeding. Theor. Appl. Genet. 134, 529-542.
    Gao, X.Q., Wang, N., Wang, X.L., and Zhang, X.S., 2019. Architecture of wheat inflorescence:insights from rice. Trends Plant Sci. 24, 802-809.
    Gong, J., Tang, Y.M., Liu, Y.J., Sun, R.W., Li, Y.H., Ma, J.X., Zhang, S.Q., Zhang, F.T., Chen, Z.B., Liao, X.Z., et al., 2022. The central circadian clock protein TaCCA1 regulates seedling growth and spike development in wheat (Triticum aestivum L.). Front. Plant Sci. 13, 946213.
    Guo, L.J., Ma, M., Wu, L.N., Zhou, M.D., Li, M.Y., Wu, B.W., Li, L., Liu, X.L., Jing, R.L., Chen, W., et al., 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol. J. 20, 168-182.
    Guo, W., Xin, M., Wang, Z., Yao, Y., Hu, Z., Song, W., Yu, K., Chen, Y., Wang, X., Guan, P., et al., 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085.
    Guo, Z.F., and Schnurbusch, T., 2015. Variation of floret fertility in hexaploid wheat revealed by tiller removal. J. Exp. Bot. 66, 5945-5958.
    Guo, Z.F., Chen, D.J., Roder, M.S., Ganal, M.W., and Schnurbusch, T., 2018. Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. Plant J. 95, 909-918.
    Gupta, A., Hua, L., Zhang, Z.Z., Yang, B., and Li, W.L., 2022. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol. J. 21, 536-548.
    Gupta, P., (2016). Use of alien genetic variation for wheat improvement. In Molecular Breeding for Sustainable Crop Improvement. (Springer), pp. 1-30.
    Gupta, P.K., Kulwal, P.L., and Jaiswal, V., 2019. Association mapping in plants in the post-GWAS genomics era. Adv. Genet. 104, 75-154.
    Hammer, K., 1984. Das Domestikationssyndrom. Die Kulturpflanze 32, 11-34.
    Hao, C.Y., Jiao, C.Z., Hou, J., Li, T., Liu, H.X., Wang, Y.Q., Zheng, J., Liu, H., Bi, Z., Xu, F.F., et al., 2020. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant. 13, 1733-1751.
    He, G.H., Zhang, Y.W., Liu, P., Jing, Y.X., Zhang, L.C., Zhu, Y.F., Kong, X.Y., Zhao, H.X., Zhou, Y., and Sun, J.Q., 2021. The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. New Phytol. 230, 988-1002.
    He, Z., Xia, X., Peng, S., and Adam Lumpkin, T., 2014. Meeting demands for increased cereal production in China. J. Cereal Sci. 59, 235-244.
    IWGSC. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345.
    IWGSC. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
    Jantasuriyarat, C., Vales, M.I., Watson, C.J., and Riera-Lizarazu, O., 2004. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 261-273.
    Jia, M.L., Li, Y.N., Wang, Z.Y., Tao, S., Sun, G.L., Kong, X.C., Wang, K., Ye, X.G., Liu, S.S., Geng, S.F., et al., 2021. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J. 108, 1754-1767.
    Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.
    Kim, S.R., Ramos, J.M., Hizon, R.J.M., Ashikari, M., Virk, P.S., Torres, E.A., Nissila, E., and Jena, K.K., 2018. Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Sci. Rep. 8, 3833.
    Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K., and Kyozuka, J., 2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130, 3841-3850.
    Kong, X.C., Wang, F., Geng, S.F., Guan, J.T., Tao, S., Jia, M.L., Sun, G.L., Wang, Z.Y., Wang, K., Ye, X.G., et al., 2022. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol. J. 20, 75-88.
    Koppolu, R., and Schnurbusch, T., 2019. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J. Integr. Plant Biol. 61, 278-295.
    Krasileva, K.V., Vasquez-Gross, H.A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., Simmonds, J., Ramirez-Gonzalez, R.H., Wang, X.D., Borrill, P., et al., 2017. Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 114, E913-E921.
    Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J., 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652-655.
    Kuzay, S., Lin, H.Q., Li, C.X., Chen, S.S., Woods, D.P., Zhang, J.L., Lan, T.Y., von Korff, M., and Dubcovsky, J., 2022. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genet. 18, e1009747.
    Kuzay, S., Xu, Y.F., Zhang, J.L., Katz, A., Pearce, S., Su, Z.Q., Fraser, M., Anderson, J.A., Brown-Guedira, G., DeWitt, N., et al., 2019. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor. Appl. Genet. 132, 2689-2705.
    Levy, A.A., and Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell 34, 2549-2567.
    Lewis, S., Faricelli, M.E., Appendino, M.L., Valarik, M., and Dubcovsky, J., 2008. The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J. Exp. Bot. 59, 3595-3607.
    Li, C.X., and Dubcovsky, J., 2008. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55, 543-554.
    Li, C.X., Lin, H.Q., Chen, A., Lau, M., Jernstedt, J., and Dubcovsky, J., 2019a. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 146.
    Li, F., Wen, W., Liu, J., Zhang, Y., Cao, S., He, Z., Rasheed, A., Jin, H., Zhang, C., Yan, J., et al., 2019b. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 19, 168.
    Li, G.W., Wang, L.J., Yang, J.P., He, H., Jin, H.B., Li, X.M., Ren, T.H., Ren, Z.L., Li, F., Han, X., et al., 2021a. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 53, 574-584.
    Li, J., Yang, J., Li, Y., and Ma, L., 2020a. Current strategies and advances in wheat biology. Crop J. 8, 879-891.
    Li, L., Shi, F., Wang, Y.Q., Yu, X.F., Zhi, J.J., Guan, Y.B., Zhao, H.Y., Chang, J.L., Chen, M.J., Yang, G.X., et al., 2020b. TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.). Plant Sci. 296, 110516.
    Li, M.R., Li, X.X., Zhou, Z.J., Wu, P.Z., Fang, M.C., Pan, X.P., Lin, Q.P., Luo, W.B., Wu, G.J., and Li, H.Q., 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377.
    Li, S.Y., Zhao, B.R., Yuan, D.Y., Duan, M.J., Qian, Q., Tang, L., Wang, B., Liu, X.Q., Zhang, J., Wang, J., Sun, J.Q., et al., 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. U. S. A. 110, 3167-3172.
    Li, Y.P., Fu, X., Zhao, M., Zhang, W., Li, B., An, D., Li, J., Zhang, A., Liu, R., and Liu, X.G., 2018. A Genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci. Rep. 8, 15338.
    Li, Y.P., Li, L., Zhao, M.C., Guo, L., Guo, X.X., Zhao, D., Batool, A., Dong, B.D., Xu, H.X., Cui, S.J., et al., 2021b. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol. J. 19, 1141-1154.
    Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., et al., 2019c. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol. 20, 139.
    Li, Z.S., Li, B., and Tong, Y.P., 2008. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J. Genet. Genomics 35, 451-456.
    Lin, F., Sun, Q., Xu, S., Chen, X., Zhang, L., Zhang, C., Xu, Y., Miao, Q., Qu, B., Li, N., et al., 2009. Identification of wheat-Thinopyrum intermedium alien disomic addition lines conferring resistance to stripe rust. Can. J. Plant Sci. 89, 569-574.
    Lin, X.L., Xu, Y.X., Wang, D.Z., Yang, Y.M., Zhang, X.Y., Bie, X.M., Wang, H.Z., Jiang, J.F., Ding, Y.L., Lu, F., et al., 2022. Systematic mining and genetic characterization of regulatory factors for wheat spike development. BioRxiv 2022.11.11.516122.
    Lin, Y., Jiang, X.J., Hu, H.Y., Zhou, K.Y., Wang, Q., Yu, S.F., Yang, X.L., Wang, Z.Q., Wu, F.K., Liu, S.H., et al., 2021. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J. 9, 1108-1114.
    Liu, H.Y., Wang, K., Tang, H.L., Gong, Q., Du, L.Q., Pei, X.W., and Ye, X.G., 2020. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J. Genet. Genomics 47, 563-575.
    Liu, J., Cheng, X.L., Liu, P., and Sun, J.Q., 2017. miR156-Targeted SBP-Box Transcription Factors Interact with DWARF53 to Regulate TEOSINTE BRANCHED1 and BARREN STALK1 Expression in Bread Wheat. Plant Physiol. 174, 1931-1948.
    Liu, J., Chen, Z.Y., Wang, Z.H., Zhang, Z.H., Xie, X.M., Wang, Z.H., Chai, L.L., Song, L., Cheng, X.J., Feng, M., et al., 2021a. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Mol. Plant 14, 1472-1488.
    Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q.Y., Bartlett, M., and Jackson, D., 2021b. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287-294.
    Liu, X., Bie, X., Lin, X., Li, M., Wang, H., Zhang, X., Yang, Y., Zhang, C., Zhang, X., and Xiao, J., 2022. Uncovering transcriptional regulatory network during regeneration for boosting wheat transformation. bioRxiv 2022.10.21.513305.
    Longo, S.K., Guo, M.G., Ji, A.L., and Khavari, P.A., 2021. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627-644.
    Lopez-Gonzalez, C., Juarez-Colunga, S., Morales-Elias, N.C., and Tiessen, A., 2019. Exploring regulatory networks in plants:transcription factors of starch metabolism. PeerJ. 7, e6841.
    Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., and Ashikari, M., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549.
    Molnár-Láng, M., Ceoloni, C., and Doležel, J., 2015. Alien Introgression in Wheat. Cham:Springer International Publishing.
    Murase, K., Hirano, Y., Sun, T.P., and Hakoshima, T., 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459-463.
    Muraya, M.M., Chu, J., Zhao, Y., Junker, A., Klukas, C., Reif, J.C., and Altmann, T., 2017. Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping. Plant J. 89, 366-380.
    Ochagavia, H., Prieto, P., Savin, R., Griffiths, S., and Slafer, G., 2018. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J. Exp. Bot. 69, 2621-2631.
    Ouyang, W.Z., Luan, S.P., Xiang, X., Guo, M.R., Zhang, Y., Li, G.L., and Li, X.W., 2022. Profiling plant histone modification at single-cell resolution using snCUT&Tag. Plant Biotechnol. J. 20, 420-422.
    Pang, Y., Liu, C., Wang, D., St Amand, P., Bernardo, A., Li, W., He, F., Li, L., Wang, L., Yuan, X., et al., 2020. High-Resolution Genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 13, 1311-1327.
    Pei, H.C., Teng, W., Gao, L.F., Gao, H.B., Ren, X.N., Liu, Y.H., Jia, J.Z., Tong, Y.P., Wang, Y.H., and Lu, Z.F., 2022. Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci. China Life Sci. doi: 10.1007/s11427-022-2202-3.
    Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F., 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
    Poursarebani, N., Seidensticker, T., Koppolu, R., Trautewig, C., Gawronski, P., Bini, F., Govind, G., Rutten, T., Sakuma, S., Tagiri, A., et al., 2015. The genetic basis of composite spike form in barley and 'Miracle-Wheat'. Genetics 201, 155-165.
    Ramsay, L., Comadran, J., Druka, A., Marshall, D.F., Thomas, W.T., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., et al., 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43, 169-172.
    Rasheed, A., and Xia, X.C., 2019. From markers to genome-based breeding in wheat. Theor. Appl. Genet. 132, 767-784.
    Sakuma, S., and Schnurbusch, T., 2020. Of floral fortune:tinkering with the grain yield potential of cereal crops. New Phytol. 225, 1873-1882.
    Sakuma, S., Golan, G., Guo, Z.F., Ogawa, T., Tagiri, A., Sugimoto, K., Bernhardt, N., Brassac, J., Mascher, M., Hensel, G., et al., 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. U. S. A. 116, 5182-5187.
    Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z., and Ismail, I., 2017. MicroRNA and transcription factor:key players in plant regulatory network. Front. Plant Sci. 8, 565.
    Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., Shirasawa, K., and Isobe, S., 2021. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar 'Fielder'. DNA Res. 28.
    Sehgal, D., and Dreisigacker, S., 2022. GWAS case studies in wheat. Methods Mol. Biol. 2481, 341-351.
    Serrano-Mislata, A., Bencivenga, S., Bush, M., Schiessl, K., Boden, S., and Sablowski, R., 2017. DELLA genes restrict inflorescence meristem function independently of plant height. Nat. Plants 3, 749-754.
    Shaw, L.M., Lyu, B., Turner, R., Li, C.X., Chen, F.J., Han, X.L., Fu, D.L., and Dubcovsky, J., 2019. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. J. Exp. Bot. 70, 193-204.
    Shi, X., Cui, F., Han, X., He, Y., Zhao, L., Zhang, N., Zhu, H., Liu, Z., Ma, B., Zheng, S., et al., 2022. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen use efficiency in the wheat cultivar Kenong 9204. Mol. Plant 15, 1440-1456.
    Shitsukawa, N., Kinjo, H., Takumi, S., and Murai, K., 2009. Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats. Ann. Bot. 104, 243-251.
    Shitsukawa, N., Takagishi, A., Ikari, C., Takumi, S., and Murai, K., 2006. WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet. Syst. 81, 13-20.
    Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.S., Gill, B.S., and Faris, J.D., 2006. Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547-555.
    Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., Li, J., et al., 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403-1411.
    Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82.
    Sun, T.P., 2011. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21, R338-R345.
    Tahir, R., Bux, H., Kazi, A.G., Rasheed, A., Napar, A.A., Ajmal, S.U., and Mujeeb-Kazi, A., 2014. Evaluation of pakistani elite wheat germplasm for T1BL.1RS chromosome translocation. J. Agr. Sci. Tech. 16, 421-432.
    Takumi, S., Kosugi, T., Murai, K., Mori, N., and Nakamura, C., 2000. Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 249, 171-181.
    Tian, X., Xia, X., Xu, D., Liu, Y., Xie, L., Hassan, M.A., Song, J., Li, F., Wang, D., Zhang, Y., et al., 2022. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol. 233, 738-750.
    Trevaskis, B., Tadege, M., Hemming, M.N., Peacock, W.J., Dennis, E.S., and Sheldon, C., 2007. Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol. 143, 225-235.
    Vahamidis, P., Karamanos, A., Economou, G., and Fasseas, C., 2014. A new scale for the assessment of wheat spike morphogenesis. Ann. Appl. Biol. 164, 220-231.
    Voss-Fels, K., Frisch, M., Qian, L., Kontowski, S., Friedt, W., Gottwald, S., and Snowdon, R.J., 2015. Subgenomic diversity patterns caused by directional selection in bread wheat gene pools. Plant Genome. 8, eplantgenome2015.03.0013.
    Waddington, S.R., Cartwright, P.M., and Wall, P.C., 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Ann. Bot. 51, 119-130.
    Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
    Wallace, J.G., Rodgers-Melnick, E., and Buckler, E.S., 2018. On the road to Breeding 4.0:unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421-444.
    Wang, D., Li, Y., Wang, H., Xu, Y., Yang, Y., Zhou, Y., Chen, Z., Zhou, Y., Gui, L., Guo, Y., et al., 2022a. Boosting wheat functional genomics via indexed EMS mutant library of KN9204. bioRxiv 2022.12.05.519108.
    Wang, K., Riaz, B., and Ye, X.G., 2018a. Wheat genome editing expedited by efficient transformation techniques:Progress and perspectives. Crop J. 6, 22-31.
    Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., et al., 2022b. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110-117.
    Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., et al., 2021. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33, 865-881.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    Wang, Y., Xie, J., Zhang, H., Guo, B., Ning, S., Chen, Y., Lu, P., Wu, Q., Li, M., Zhang, D., et al., 2017a. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor. Appl. Genet. 130, 2191-2201.
    Wang, Y.G., Yu, H.P., Tian, C.H., Sajjad, M., Gao, C.X., Tong, Y.P., Wang, X.F., and Jiao, Y.L., 2017b. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol. 175, 746-757.
    Wang, Y.G., Du, F., Wang, J., Wang, K., Tian, C.H., Qi, X.Q., Lu, F., Liu, X.G., Ye, X.G., and Jiao, Y.L., 2022c. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants 8, 930-939.
    Wang, Z.Q., Zhang, W.Y., and Yang, J.C., 2018b. Physiological mechanism underlying spikelet degeneration in rice. J. Integr. Agric. 17, 1475-1481.
    Watson, A., Ghosh, S., Williams, M.J., Cuddy, W.S., Simmonds, J., Rey, M.D., Asyraf Md Hatta, M., Hinchliffe, A., Steed, A., Reynolds, D., et al., 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23-29.
    Wei, S.B., Li, X., Lu, Z.F., Zhang, H., Ye, X.Y., Zhou, Y.J., Li, J., Yan, Y.Y., Pei, H.C., Duan, F.Y., et al., 2022. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science. 377, eabi8455.
    Welcker, C., Sadok, W., Dignat, G., Renault, M., Salvi, S., Charcosset, A., and Tardieu, F., 2011. A common genetic determinism for sensitivities to soil water deficit and evaporative demand:meta-analysis of quantitative trait Loci and introgression lines of maize. Plant Physiol. 157, 718-729.
    Winfield, M.O., Wilkinson, P.A., Allen, A.M., Barker, G.L., Coghill, J.A., Burridge, A., Hall, A., Brenchley, R.C., D'Amore, R., Hall, N., et al., 2012. Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol. J. 10, 733-742.
    Winfield, M.O., Allen, A.M., Burridge, A.J., Barker, G.L.A., Benbow, H.R., Wilkinson, P.A., Coghill, J., Waterfall, C., Davassi, A., Scopes, G., et al., 2016. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195-1206.
    Wolde, G.M., Mascher, M., and Schnurbusch, T., 2019. Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Mol. Genet. Genomics 294, 457-468.
    Wolde, G.M., Schreiber, M., Trautewig, C., Himmelbach, A., Sakuma, S., Mascher, M., and Schnurbusch, T., 2021. Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theor. Appl. Genet. 134, 1925-1943.
    Wu, J., Kong, X.Y., Wan, J.M., Liu, X.Y., Zhang, X., Guo, X.P., Zhou, R.H., Zhao, G.Y., Jing, R.L., Fu, X.D., et al., 2011. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol. 157, 2120-2130.
    Xia, K., Sun, H.X., Li, J., Li, J., Zhao, Y., Chen, L., Qin, C., Chen, R., Chen, Z., Liu, G., et al., 2022. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299-1310.
    Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., et al., 2022. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718-1775.
    Xie, L., Zhang, Y., Wang, K., Luo, X.M., Xu, D.A., Tian, X.L., Li, L.L., Ye, X.G., Xia, X.C., Li, W.X., et al., 2021. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol. 231, 834-848.
    Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J., 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U. S. A. 100, 6263-6268.
    Yan, L.L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J., and Dubcovsky, J., 2004. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677-1686.
    Yan, L.L., Fu, D.L., Li, C.X., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J., 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. U. S. A. 103, 19581-19586.
    Yang, G., Deng, P., Guo, Q., Shi, T., Pan, W., Cui, L., Liu, X., and Nie, X., 2022. Population transcriptomic analysis identifies the comprehensive lncRNAs landscape of spike in wheat(Triticum aestivum L.). BMC Plant Biol. 22, 450.
    Yang, W., Liu, D., Li, J., Zhang, L., Wei, H., Hu, X., Zheng, Y., He, Z., and Zou, Y., 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genomics. 36, 539-546.
    Yang, Z.Y., Zheng, J.C., Liu, C.Y., Wang, Y.S., Condon, A.G., Chen, Y.F., and Hu, Y.G., 2015. Effects of the GA-responsive dwarfing gene Rht18 from tetraploid wheat on agronomic traits of common wheat. Field Crops Res. 183, 92-101.
    Yao, H., Xie, Q., Xue, S., Luo, J., Lu, J., Kong, Z., Wang, Y., Zhai, W., Lu, N., Wei, R., et al., 2019. HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theor. Appl. Genet. 132, 1789-1797.
    Yi, G., Choi, J.H., Jeong, E.G., Chon, N.S., Jena, K.K., Ku, Y.C., Kim, D.H., Eun, M.Y., Jeon, J.S., and Nam, M.H., 2005. Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)", in rice (Oryza sativa L.). Hereditas. 142, 92-97.
    Youssef, H.M., and Hansson, M., 2019. Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep. 38, 1013-1016.
    Youssef, H.M., Eggert, K., Koppolu, R., Alqudah, A.M., Poursarebani, N., Fazeli, A., Sakuma, S., Tagiri, A., Rutten, T., Govind, G., et al., 2017. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 49, 157-161.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Yu, K., Liu, D.C., Chen, Y., Wang, D.Z., Yang, W.L., Yang, W., Yin, L.X., Zhang, C., Zhao, S.C., Sun, J.Z., et al., 2019. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. J. Exp. Bot. 70, 4671-4687.
    Yuan, J., Sun, H., Wang, Y., Li, L., Chen, S., Jiao, W., Jia, G., Wang, L., Mao, J., Ni, Z., et al., 2022. Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution. Genome Biol. 23, 34.
    Yuan, Z., and Zhang, D.B., 2015. Roles of jasmonate signalling in plant inflorescence and flower development. Curr. Opin. Plant Biol. 27, 44-51.
    Yuan, Z., Persson, S., and Zhang, D.B., 2020. Molecular and genetic pathways for optimizing spikelet development and grain yield. Abiotech. 1, 276-292.
    Zanke, C., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., Argillier, O., Stiewe, G., Hinze, M., Beier, S., et al., 2014. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 5, 217.
    Zhan, P. L., Ma, S. P., Xiao, Z. L., Li, F. P., Wei, X., Lin, S. J., Wang, X. L., Ji, Z., Fu, Y., Pan, J. H., et al., 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics 49, 405-413.
    Zhang, B., Liu, X., Xu, W.N., Chang, J.Z., Li, A., Mao, X.G., Zhang, X.Y., and Jing, R.L., 2015a.
    Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci. Rep. 5, 12211.
    Zhang, D., and Yuan, Z., 2014. Molecular control of grass inflorescence development. Annu. Rev. Plant Biol. 65, 553-578.
    Zhang, D., Hao, C., Wang, L., and Zhang, X., 2012. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta 236, 1507-1517.
    Zhang, J., Zhang, J., Liu, W., Han, H., Lu, Y., Yang, X., Li, X., and Li, L., 2015b. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor. Appl. Genet. 128, 1827-1837.
    Zhang, J., Xiong, H., Guo, H., Li, Y., Xie, X., Xie, Y., Zhao, L., Gu, J., Zhao, S., Ding, Y., et al., 2021. Identification of the Q gene playing a role in spike morphology variation in wheat mutants and its regulatory network. Front. Plant Sci. 12, 807731.
    Zhang, J.P., Liu, W.H., Yang, X.M., Gao, A.N., Li, X.Q., Wu, X.Y., and Li, L.H., 2011. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol. Biol. Rep. 38, 2337-2347.
    Zhang, J.Y., Tang, Y.Y., Pu, X., Qiu, X.B., Wang, J.H., Li, T., Yang, Z., Zhou, Y., Chang, Y.X., Liang, J.J., et al., 2022a. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 135, 2543-2554.
    Zhang, X.Y., Jia, H.Y., Li, T., Wu, J.Z., Nagarajan, R., Lei, L., Powers, C., Kan, C.C., Hua, W., Liu, Z.Y., et al., 2022b. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376, 180-183
    Zhang, Y.Y., Li, Z.J., Liu, J.Y., Zhang, Y., Ye, L.H., Peng, Y., Wang, H.Y., Diao, H., Ma, Y., Wang, M.Y., et al., 2022c. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat. Commun. 13.
    Zhao, K.J., Xiao, J., Liu, Y., Chen, S.L., Yuan, C.X., Cao, A.Z., You, F.M., Yang, D.L., An, S.M., Wang, H.Y., et al., 2018. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor. Appl. Genet. 131, 1825-1834.
    Zhao, L., Yang, Y., Chen, J., Lin, X., Zhang, H., Wang, H., Wang, H., Bie, X., Jiang, J., Feng, X., et al., 2023. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 1-29.
    Zhong, J.S., van Esse, G.W., Bi, X.J., Lan, T.Y., Walla, A., Sang, Q., Franzen, R., and von Korff, M., 2021. INTERMEDIUM-M encodes an HvAP2L-H5 ortholog and is required for inflorescence indeterminacy and spikelet determinacy in barley. Proc. Natl. Acad. Sci. U. S. A. 118, e2011779118.
    Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., et al., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774-786.
    Zhu, Y., and Wagner, D., 2020. Plant inflorescence architecture:the formation, activity, and fate of axillary meristems. Cold Spring Harb. Perspect. Biol. 12, a034652.
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  127
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 录用日期:  2023-02-28
  • 修回日期:  2023-02-28
  • 网络出版日期:  2023-03-13

目录

    /

    返回文章
    返回