留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VT3D: a visualization toolbox for 3D transcriptomic data

Lidong Guo Yao Li Yanwei Qi Zhi Huang Kai Han Xiaobin Liu Xin Liu Mengyang Xu Guangyi Fan

Lidong Guo, Yao Li, Yanwei Qi, Zhi Huang, Kai Han, Xiaobin Liu, Xin Liu, Mengyang Xu, Guangyi Fan. VT3D: a visualization toolbox for 3D transcriptomic data[J]. 遗传学报, 2023, 50(9): 713-719. doi: 10.1016/j.jgg.2023.04.001
引用本文: Lidong Guo, Yao Li, Yanwei Qi, Zhi Huang, Kai Han, Xiaobin Liu, Xin Liu, Mengyang Xu, Guangyi Fan. VT3D: a visualization toolbox for 3D transcriptomic data[J]. 遗传学报, 2023, 50(9): 713-719. doi: 10.1016/j.jgg.2023.04.001
Lidong Guo, Yao Li, Yanwei Qi, Zhi Huang, Kai Han, Xiaobin Liu, Xin Liu, Mengyang Xu, Guangyi Fan. VT3D: a visualization toolbox for 3D transcriptomic data[J]. Journal of Genetics and Genomics, 2023, 50(9): 713-719. doi: 10.1016/j.jgg.2023.04.001
Citation: Lidong Guo, Yao Li, Yanwei Qi, Zhi Huang, Kai Han, Xiaobin Liu, Xin Liu, Mengyang Xu, Guangyi Fan. VT3D: a visualization toolbox for 3D transcriptomic data[J]. Journal of Genetics and Genomics, 2023, 50(9): 713-719. doi: 10.1016/j.jgg.2023.04.001

VT3D: a visualization toolbox for 3D transcriptomic data

doi: 10.1016/j.jgg.2023.04.001 cstr: 32370.14.j.jgg.2023.04.001
基金项目: 

We thank Dr. Li Deng, Dr. Hanbo Li, Dr. Xiaoyu Wei, Chao Liu, Chang Shi, and Junfu Guo from the BGI group for the helpful discussion. This work has been supported by the General Program (Key Program, Major Research Plan) of National Natural Science Foundation of China (No. 32170439).

详细信息
    通讯作者:

    Mengyang Xu,E-mail:xumengyang@genomics.cn

    Guangyi Fan,E-mail:fanguangyi@genomics.cn

VT3D: a visualization toolbox for 3D transcriptomic data

Funds: 

We thank Dr. Li Deng, Dr. Hanbo Li, Dr. Xiaoyu Wei, Chao Liu, Chang Shi, and Junfu Guo from the BGI group for the helpful discussion. This work has been supported by the General Program (Key Program, Major Research Plan) of National Natural Science Foundation of China (No. 32170439).

  • 摘要: Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way. Three-dimension (3D) spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples, revolutionizing the understanding of gene regulatory interactions and cell niches. However, limited accessible tools for data visualization impede the potential impact and application of this technology. Here we introduce VT3D, a visualization toolbox that allows users to explore 3D transcriptomic data, enabling gene expression projection to any 2D plane of interest, 2D virtual slice creation and visualization, and interactive 3D data browsing with surface model plots. In addition, it can either work on personal devices in standalone mode or be hosted as a web-based server. We apply VT3D to multiple datasets produced by the most popular techniques, including both sequencing-based approaches (Stereo-seq, spatial transcriptomics, and Slide-seq) and imaging-based approaches (MERFISH and STARMap), and successfully build a 3D atlas database that allows interactive data browsing. We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics, thus accelerating related studies such as embryogenesis and organogenesis processes. The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D, and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example.
  • [1] Asp, M., Giacomello, S., Larsson, L., Wu, C., Furth, D., Qian, X., Wardell, E., Custodio, J., Reimegard, J., Salmen, F., et al., 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.
    [2] Burtsev, S.V.,Kuzmin, Y.P., 1993. An efficient flood-filling algorithm. Comput. Graph. 17, 549-561.
    [3] Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., et al., 2022a. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792.
    [4] Chen, X., Fischer, S., Zhang, A., Gillis, J.,Zador, A.M., 2022b. Modular cell type organization of cortical areas revealed by in situ sequencing. BioRxiv. https://doi.org/10.1101/2022.11.06.515380.
    [5] Cho, C.S., Xi, J., Si, Y., Park, S.R., Hsu, J.E., Kim, M., Jun, G., Kang, H.M.,Lee, J.H., 2021. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559-3572.
    [6] Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S.,Jefferis, G.S., 2016. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. Neuron 91, 293-311.
    [7] Dries, R., Zhu, Q., Dong, R., Eng, C.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al., 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78.
    [8] Fang, S., Chen, B., Zhang, Y., Sun, H., Liu, L., Liu, S., Li, Y.,Xu, X., 2022. Computational approaches and challenges in spatial transcriptomics. Genomics Proteomics Bioinformatics.
    [9] Fernandez Navarro, J., Lundeberg, J.,Stahl, P.L., 2019. ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets. Bioinformatics 35, 1058-1060.
    [10] Griffith, L.G.,Swartz, M.A., 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211-224.
    [11] Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., Chen, H., Wang, J., Tang, H., Ge, W., et al., 2020. Construction of a human cell landscape at single-cell level. Nature 581, 303-309.
    [12] Ho, J.L., Konda, A., Rahman, J., Harris, E., Korn, R., Sabir, A., Bawany, B., Gulati, R., Harris, G.J., Boswell, W.D., et al., 2020. Comparative analysis of three-dimensional volume rendering and maximum intensity projection for preoperative planning in liver cancer. Eur. J. Radiol. Open 7, 100259.
    [13] Law, J., Morris, D.E., Izzi-Engbeaya, C., Salem, V., Coello, C., Robinson, L., Jayasinghe, M., Scott, R., Gunn, R., Rabiner, E., et al., 2018. Thermal Imaging Is a Noninvasive Alternative to PET/CT for Measurement of Brown Adipose Tissue Activity in Humans. J. Nucl. Med. 59, 516-522.
    [14] Li, B., Gould, J., Yang, Y., Sarkizova, S., Tabaka, M., Ashenberg, O., Rosen, Y., Slyper, M., Kowalczyk, M.S., Villani, A.C., et al., 2020. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793-798.
    [15] Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M.,Chen, W., 2018. ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136-146.
    [16] Liu, X., Zeira, R.,Raphael, B.J., 2023. PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data. BioRxiv.
    [17] Marshall, J.L., Noel, T., Wang, Q.S., Chen, H., Murray, E., Subramanian, A., Vernon, K.A., Bazua-Valenti, S., Liguori, K., Keller, K., et al., 2022. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097.
    [18] Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D., Hao, J., Regev, A., Dulac, C., et al., 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362.
    [19] Moses, L.,Pachter, L., 2022. Museum of spatial transcriptomics. Nat. Methods 19, 534-546.
    [20] Nobori, T., Oliva, M., Lister, R.,Ecker, J.R., 2022. PHYTOMap: Multiplexed single-cell 3D spatial gene expression analysis in plant tissue. BioRxiv.
    [21] Ortiz, C., Navarro, J.F., Jurek, A., Martin, A., Lundeberg, J.,Meletis, K., 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446.
    [22] Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra, I.L., Holmberg, O., Virshup, I., et al., 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171-178.
    [23] Peng, H., Ruan, Z., Long, F., Simpson, J.H.,Myers, E.W., 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348-353.
    [24] Pinter, C., Lasso, A.,Fichtinger, G., 2019. Polymorph segmentation representation for medical image computing. Comput. Methods Programs Biomed. 171, 19-26.
    [25] Qiu, X., Zhu, D.Y., Yao, J., Jing, Z., Zuo, L., Wang, M., Min, K.H., Pan, H., Wang, S., Liao, S., et al., 2022. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. BioRxiv.
    [26] Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467.
    [27] Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al., 2020. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236-249.
    [28] Sullivan, C.B.,Kaszynski, A.A., 2019. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). J. Open Source Softw. 4, 1450.
    [29] Sun, D., Liu, Z., Li, T., Wu, Q.,Wang, C., 2022. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 50, e42.
    [30] Wallis, J.W., Miller, T.R., Lerner, C.A.,Kleerup, E.C., 1989. Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8, 297-230.
    [31] Wang, G., Zhao, J., Yan, Y., Wang, Y., Wu, A.R.,Yang, C., 2023. Construction of a 3D whole organism spatial atlas by joint modeling of multiple slices. BioRxiv.
    [32] Wang, M., Hu, Q., Lv, T., Wang, Y., Lan, Q., Xiang, R., Tu, Z., Wei, Y., Han, K., Shi, C., et al., 2022. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev. Cell 57, 1271-1283 e1274.
    [33] Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C., Liu, J., et al., 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361.
    [34] Waylen, L.N., Nim, H.T., Martelotto, L.G.,Ramialison, M., 2020. From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun. Biol. 3, 602.
    [35] Wei, R., He, S., Bai, S., Sei, E., Hu, M., Thompson, A., Chen, K., Krishnamurthy, S.,Navin, N.E., 2022. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190-1199.
    [36] Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
    [37] Xu, Z., Wang, W., Yang, T., Chen, J., Huang, Y., Gould, J., Du, W., Yang, F., Li, L., Lai, T., et al., 2022. STOmicsDB: a database of Spatial Transcriptomic data. BioRxiv.
    [38] Yuan, Z., Pan, W., Zhao, X., Zhao, F., Xu, Z., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J., 2023. SODB facilitates comprehensive exploration of spatial omics data. Nat. Methods 20, 387-399.
    [39] Zeira, R., Land, M., Strzalkowski, A.,Raphael, B.J., 2022. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567-575.
  • 加载中
计量
  • 文章访问数:  578
  • HTML全文浏览量:  270
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 录用日期:  2023-04-04
  • 修回日期:  2023-04-03
  • 刊出日期:  2023-04-11

目录

    /

    返回文章
    返回