留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yunchuan Liu, Wei Xi, Xiaolu Wang, Huifang Li, Hongxia Liu, Tian Li, Jian Hou, Xu Liu, Chenyang Hao, Xueyong Zhang. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.002
Citation: Yunchuan Liu, Wei Xi, Xiaolu Wang, Huifang Li, Hongxia Liu, Tian Li, Jian Hou, Xu Liu, Chenyang Hao, Xueyong Zhang. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.002

doi: 10.1016/j.jgg.2023.04.002

TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat

Funds: This study was supported by the National Natural Science Foundation of China (32201804) and the China Postdoctoral Science Foundation (2022M723458). The authors thank Professor Genying Li (Shandong Academy of Agricultural Sciences) for help in wheat transformation.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ahmed, N., Maekawa, M., Tetlow, I.J., 2008. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice. Aust. J. Agr. Res. 59, 599-604.
    [2] Ahuja, G., Jaiswal, S., Hucl, P., Chibbar, R.N., 2013. Genome-specific granule-bound starch synthase I (GBSSI) influences starch biochemical and functional characteristics in near-isogenic wheat (Triticum aestivum L.) lines. J. Agric. Food Chem. 61, 12129-12138.
    [3] Bahaji, A., Li, J., Sanchez-Lopez, A.M., Baroja-Fernandez, E., Munoz, F.J., Ovecka, M., Almagro, G., Montero, M., Ezquer, I., Etxeberria, E., et al., 2014. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol. Adv. 32, 87-106.
    [4] Bai, A.N., Lu, X.D., Li, D.Q., Liu, J.X., Liu, C.M., 2016. NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm. Cell Res. 26, 384-388.
    [5] Bello, B.K., Hou, Y., Zhao, J., Jiao, G., Wu, Y., Li, Z., Wang, Y., Tong, X., Wang, W., Yuan, W., et al., 2019. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol. J. 17, 1222-1235.
    [6] Borght, A.V., Goesaert, H., Veraverbeke, W.S., Delcour, J.A., 2004 Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. J. Cereal. Sci. 41, 221-237.
    [7] Brinton, J., Uauy, C., 2019. A reductionist approach to dissecting grain weight and yield in wheat. J. Integr. Plant Biol. 61, 337-358.
    [8] Cai, H., Chen, Y., Zhang, M., Cai, R., Cheng, B., Ma, Q., Zhao, Y., 2017. A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm. Physiol. Mol. Biol. Plants 23, 143-154.
    [9] Cai, Y.C., Feng, B.B., Jiao, G.A., Sheng, Z.H., Luo, J., Tang, S.Q., Wang, J.L., Hu, P.S., Wei, X.J., 2019. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci. 26, 77-87.
    [10] Dai, D., Ma, Z., Song, R., 2021. Maize endosperm development. J. Integr. Plant Biol. 63, 613-627.
    [11] Deng, Y., Wang, J., Zhang, Z., Wu, Y., 2020. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol. J. 18, 1897-1907.
    [12] Denyer, K., Dunlap, F., Thorbjornsen, T., Keeling, P., Smith, A.M., 1996. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 112, 779-785.
    [13] Dong, Q., Xu, Q., Kong, J., Peng, X., Zhou, W., Chen, L., Wu, J., Xiang, Y., Jiang, H., Cheng, B., 2019. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci. 283, 407-415.
    [14] Feller, A., Machemer, K., Braun, E.L., Grotewold, E., 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66, 94-116.
    [15] Feng, F., Qi, W., Lv, Y., Yan, S., Xu, L., Yang, W., Yuan, Y., Chen, Y., Zhao, H., and Song, R., 2018. OPAQUE11 is a central hub of the regulatorynetwork for maize endosperm development and nutrient metabolism. Plant Cell 30, 375-396.
    [16] Fu, F.F., Xue, H.W., 2010. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 154, 927-938.
    [17] Gao, Y., An, K., Guo, W., Chen, Y., Zhang, R., Zhang, X., Chang, S., Rossi, V., Jin, F., Cao, X., et al., 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 33, 603-622.
    [18] Guo, D., Hou, Q., Zhang, R., Lou, H., Li, Y., Zhang, Y., You, M., Xie, C., Liang, R., Li, B., 2020. Over-expressing TaSPA-B reduces prolamin and starch accumulation in wheat (Triticum aestivum L.) Grains. Int. J. Mol. Sci. 21.
    [19] Guo, X., Fu, Y., Lee, Y.J., Chern, M., Li, M., Cheng, M., Dong, H., Yuan, Z., Gui, L., Yin, J., et al., 2022. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnol. J. 20, 1311-1326.
    [20] Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., Laing, W.A., 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13.
    [21] Huang, L., Sreenivasulu, N., Liu, Q., 2020. Waxy editing: old meets new. Trends Plant Sci. 25, 963-966.
    [22] Huang, L., Tan, H., Zhang, C., Li, Q., Liu, Q., 2021. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2, 100237.
    [23] James, M.G., Denyer, K., Myers, A.M., 2003. Starch synthesis in the cereal endosperm. Curr. Opin. in Plant Biol. 6, 215-222.
    [24] Jeon, J.S., Ryoo, N., Hahn, T.R., Walia, H., Nakamura, Y., 2010. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem. 48, 383-392.
    [25] Kubo, A., Colleoni, C., Dinges, J.R., Lin, Q., Lappe, R.R., Rivenbark, J.G., Meyer, A.J., Ball, S.G., James, M.G., Hennen-Bierwagen, T.A., et al., 2010. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol. 153, 956-969.
    [26] Kubo, A., Rahman, S., Utsumi, Y., Li, Z., Mukai, Y., Yamamoto, M., Ugaki, M., Harada, K., Satoh, H., Konik-Rose, C., et al., 2005. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol. 137, 43-56.
    [27] Li, C., Yue, Y., Chen, H., Qi, W., Song, R., 2018. The ZmbZIP22 transcription factor regulates 27-kD gamma-zein gene transcription during maize endosperm development. Plant Cell 30, 2402-2424.
    [28] Liu, F., Romanova, N., Lee, E.A., Ahmed, R., Evans, M., Gilbert, E.P., Morell, M.K., Emes, M.J., Tetlow, I.J., 2012. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem. J. 448, 373-387.
    [29] Li, H., Liu, H., Hao, C., Li, T., Liu, Y., Wang, X., Yang, Y., Zheng, J., Zhang, X., 2022., The Auxin response factor TaARF15-A1 negatively regulates senescence in common wheat (Triticum aestivum L.). Plant Physiol. https://doi.org/10.1093/plphys/kiac497.
    [30] Liu, G., Wu, Y., Xu, M., Gao, T., Wang, P., Wang, L., Guo, T., Kang, G., 2016. Virus-induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. Int. J. Mol. Sci. 17.
    [31] Liu, J., Wu, M.W., Liu, C.M., 2022. Cereal endosperms: Development and storage product accumulation. Annu. Rev. Plant Biol. 73, 255-291.
    [32] Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., Guo, J., Liang, W., Chen, L., Yin, J., et al., 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 141, 1167-1184.
    [33] Liu, Y., Hou, J., Wang, X., Li, T., Majeed, U., Hao, C., Zhang, X., 2020. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. J. Exp. Bot. 71, 5794-5807.
    [34] Liu, Y., Wang, X., Hao, C., Irshad, A., Li, T., Liu, H., Hou, J., Zhang, X., 2022. TaABI19 positively regulates grain development in wheat. J. Integr. Agr. https://doi.org/10.1016/j.jia.2022.08.049
    [35] Ma, B., Zhang, L., Gao, Q., Wang, J., Li, X., Wang, H., Liu, Y., Lin, H., Liu, J., Wang, X., et al., 2021. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 53, 906-915.
    [36] Miura, H., Tanii, S., Nakamura, T., Watanabe, N., 1994. Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor. Appl. Genet. 89, 276-280.
    [37] Ohdan, T., Francisco, P.B., Jr., Sawada, T., Hirose, T., Terao, T., Satoh, H., Nakamura, Y., 2005. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56, 3229-3244.
    [38] Perez, L., Soto, E., Farre, G., Juanos, J., Villorbina, G., Bassie, L., Medina, V., Serrato, A.J., Sahrawy, M., Rojas, J.A., et al., 2019. CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis. Plant Cell Rep. 38, 417-433.
    [39] Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., et al., 2018. The transcriptional landscape of polyploid wheat. Science 361, eaar6089.
    [40] Regina, A., Berbezy, P., Kosar-Hashemi, B., Li, S., Cmiel, M., Larroque, O., Bird, A.R., Swain, S.M., Cavanagh, C., Jobling, S.A., et al., 2015. A genetic strategy generating wheat with very high amylose content. Plant Biotechnol. J. 13, 1276-1286.
    [41] Sestili, F., Sparla, F., Botticella, E., Janni, M., D'Ovidio, R., Falini, G., Marri, L., Cuesta-Seijo, J.A., Moscatello, S., Battistelli, A., et al., 2016. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Sci. 252, 230-238.
    [42] Shan, Q., Wang, Y., Li, J., Gao C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395.
    [43] Shevkani, K., Singh, N., Bajaj, R., Kaur, A., 2017. Wheat starch production, structure, functionality and applications-a review. Int. J. of Food Sci. Tech. 52, 38-58.
    [44] Song, Y., Luo, G., Shen, L., Yu, K., Yang, W., Li, X., Sun, J., Zhan, K., Cui, D., Liu, D., et al., 2020. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. New Phytol. 226, 1384-1398.
    [45] Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., et al., 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602-606.
    [46] Sun, Q., Li, Y., Gong, D., Hu, A., Zhong, W., Zhao, H., Ning, Q., Tan, Z., Liang, K., Mu, L., et al., 2022. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat. Commun. 13, 5708.
    [47] Sun, X., Ling, S., Lu, Z., Ouyang, Y.D., Liu, S., Yao, J., 2014. OsNF-YB1, a rice endosperm-specific gene, is essential for cell proliferation in endosperm development. Gene 551, 214-221.
    [48] Tang, X.J., Peng, C., Zhang, J., Cai, Y., You, X.M., Kong, F., Yan, H.G., Wang, G.X., Wang, L., Jin, J., et al., 2016. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci. 249, 70-83.
    [49] Tuncel, A., Okita, T.W., 2013. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci. 211, 52-60.
    [50] Utsumi, Y., Utsumi, C., Sawada, T., Fujita, N., Nakamura, Y., 2011. Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol. 156, 61-77.
    [51] Wang, J., Chen, Z., Zhang, Q., Meng, S., Wei, C., 2020. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol. 184, 1775-1791.
    [52] Wang, J.C., Xu, H., Zhu, Y., Liu, Q.Q., Cai, X.L., 2013. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64, 3453-3466.
    [53] Wang, L., Xiang, L., Hong, J., Xie, Z., Li, B., 2019. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.). 3 Biotech. 9, 236.
    [54] Xiang, D., Quilichini, T.D., Liu, Z., Gao, P., Pan, Y., Li, Q., Nilsen, K.T., Venglat, P., Esteban, E., Pasha, A., et al., 2019. The transcriptional landscape of polyploid wheats and their diploid ancestors during embryogenesis and grain development. Plant Cell 31, 2888-2911.
    [55] Xiong, Y., Ren, Y., Li, W., Wu, F., Yang, W., Huang, X., Yao, J., 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J. Exp. Bot. 70, 3765-3780.
    [56] Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, Cai., Li, X., et al., 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
    [57] Xu, J.J., Zhang, X.F., Xue, H.W., 2016. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. J. Exp. Bot. 67, 6399-6411.
    [58] Xu, R., Yu, H.Y., Wang, J.M., Duan, P.G., Zhang, B.L., Li, J., Li, Y., Xu, J.S., Lyu, J., Li, N., et al., 2018. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. 95, 937-946.
    [59] Yang, T., Guo, L., Ji, C., Wang, H., Wang, J., Zheng, X., Xiao, Q., Wu, Y., 2021. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell 33, 104-128.
    [60] Yang, T., Wang, H., Guo, L., Wu, X., Xiao, Q., Wang, J., Wang, Q., Ma, G., Wang, W., Wu, Y., 2022. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. Plant Cell 34, 1933-1956.
    [61] Yang, X., Ren, Y., Cai, Y., Niu, M., Feng, Z., Jing, R., Mou, C., Liu, X., Xiao, L., Zhang, X., et al., 2018. Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.). Rice 11, 41.
    [62] Zhan, J., Li, G., Ryu, C.H., Ma, C., Zhang, S., Lloyd, A., Hunter, B.G., Larkins, B.A., Drews, G.N., Wang, X., et al., 2018. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell 30, 2425-2446.
    [63] Zhang, Z., Dong, J., Ji, C., Wu, Y., Messing, J., 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc. Natl. Acad. Sci. U. S. A. 116, 11223-11228.
    [64] Zhang, Z., Zheng, X., Yang, J., Messing, J., Wu, Y., 2016. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc. Natl. Acad. Sci. U. S. A. 113, 10842-10847.
  • 加载中
计量
  • 文章访问数:  229
  • HTML全文浏览量:  91
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 录用日期:  2023-04-06
  • 修回日期:  2023-04-03
  • 网络出版日期:  2023-04-14

目录

    /

    返回文章
    返回