留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ying Feng, Li Guo, Chen Yang, Hui Zheng, Xiao Xiao, Hanhui Ma. The local density of H3K9me3 dictates the stability of HP1α condensates-mediated genomic interactions[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.006
Citation: Ying Feng, Li Guo, Chen Yang, Hui Zheng, Xiao Xiao, Hanhui Ma. The local density of H3K9me3 dictates the stability of HP1α condensates-mediated genomic interactions[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.006

doi: 10.1016/j.jgg.2023.04.006

The local density of H3K9me3 dictates the stability of HP1α condensates-mediated genomic interactions

Funds: This work was funded by the National Natural Science Foundation of China (No. 31970591 to H. Ma), the Shanghai Pujiang Program (19PJ1408000 to H. Ma) and the Shanghai Science and Technology Innovation Action Plan (21JC1404800 to H. Ma). We thank Luke Lavis (Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA) for the HaloTag JF-549. U2OS Genomic DNA was a gift from Xingxu Huang. We thank Pengwei Zhang and Shuangli Zhang for their help with cell sorting. DeltaVision Ultra microscopy was provided by the Shanghai Institute for Advanced Immunochemical Studied (SIAIS) at Shanghaitech University.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Beliveau, B.J., Boettiger, A.N., Nir, G., Bintu, B., Yin, P., Zhuang, X., Wu, C.T., 2017. In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods Mol Biol 1663, 231-252.
    [2] Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., Dekker, J., 2012. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268-276.
    [3] Bernstein, B.E., Meissner, A., Lander, E.S., 2007. The mammalian epigenome. Cell 128, 669-681.
    [4] Bickmore, W.A., 2013. The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14, 67-84.
    [5] de Laat, W., Duboule, D., 2013. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499-506.
    [6] Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., O'Shea, C.C., Park, P.J., Ren, B., et al., 2017. The 4D nucleome project. Nature 549, 219-226.
    [7] Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B., 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380.
    [8] Falk, M., Feodorova, Y., Naumova, N., Imakaev, M., Lajoie, B.R., Leonhardt, H., Joffe, B., Dekker, J., Fudenberg, G., Solovei, I., et al., 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395-399.
    [9] Feng, Y., Wang, Y., Wang, X., He, X., Yang, C., Naseri, A., Pederson, T., Zheng, J., Zhang, S., Xiao, X., et al., 2020. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol 21, 296.
    [10] Fortin, J.P., Hansen, K.D., 2015. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 16, 180.
    [11] Gibcus, J.H., Dekker, J., 2013. The hierarchy of the 3D genome. Mol Cell 49, 773-782.
    [12] Kornberg, R.D., Lorch, Y., 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294.
    [13] Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359.
    [14] Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
    [15] Ma, H., Tu, L.C., Naseri, A., Chung, Y.C., Grunwald, D., Zhang, S., Pederson, T., 2018. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15, 928-931.
    [16] Ma, H., Tu, L.C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., Pederson, T., 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34, 528-530.
    [17] Mosch, K., Franz, H., Soeroes, S., Singh, P.B., Fischle, W., 2011. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS ONE 6, e15894.
    [18] Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N., Mirny, L.A., 2018. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl. Acad. Sci. U. S. A. 115, E6697-E6706.
    [19] Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1), W160-W165.
    [20] Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
    [21] Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., Cavalli, G., 2012. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472.
    [22] Spracklin, G., Pradhan, S., 2020. Protect-seq: genome-wide profiling of nuclease inaccessible domains reveals physical properties of chromatin. Nucleic Acids Res 48, e16.
    [23] Strom, A.R., Emelyanov, A.V., Mir, M., Fyodorov, D.V., Darzacq, X., Karpen, G.H., 2017. Phase separation drives heterochromatin domain formation. Nature 547, 241-245.
    [24] Szabo, Q., Bantignies, F., Cavalli, G., 2019. Principles of genome folding into topologically associating domains. Sci Adv 5, eaaw1668.
    [25] Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., Prins, P., 2015. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032-2034.
    [26] Wang, L., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y., et al., 2019. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Mol Cell 76, 646-659.
    [27] Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al., 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.
    [28] Zheng, H., Xie, W., 2019. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20, 535-550.
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  46
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 录用日期:  2023-04-13
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回