留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Huiru Chen, Wanting Wang, Xiao Chen, Yake Niu, Yuanyuan Qi, Ze Yu, Minyu Xiong, Pengbo Xu, Wenxiu Wang, Tongtong Guo, Hong-Quan Yang, Zhilei Mao. PIFs interact with SWC6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.008
Citation: Huiru Chen, Wanting Wang, Xiao Chen, Yake Niu, Yuanyuan Qi, Ze Yu, Minyu Xiong, Pengbo Xu, Wenxiu Wang, Tongtong Guo, Hong-Quan Yang, Zhilei Mao. PIFs interact with SWC6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.04.008

doi: 10.1016/j.jgg.2023.04.008

PIFs interact with SWC6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis

Funds: This work was supported by the National Natural Science Foundation of China grant (31900609), the National Key Research and Development Program of China grant (2017YFA0503802), the National Natural Science Foundation of China grants (31530085, 31900207, and 32000183), and the Science and Technology Commission of Shanghai Municipality grant (18DZ2260500).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Al-Sady, B., Ni, W., Kircher, S., Schafer, E., Quail, P.H., 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23, 439-446.
    [2] Arico, D., Legris, M., Castro, L., Garcia, C.F., Laino, A., Casal, J.J., Mazzella, M.A., 2019. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ. 42, 2554-2566.
    [3] Balcerowicz, M., 2020. PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling. Physiol. Plant 169, 347-356.
    [4] Briggs, W.R., Christie, J.M., 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204-210.
    [5] Cao, X., Xu, P., Liu, Y., Yang, G., Liu, M., Chen, L., Cheng, Y., Xu, P., Miao, L., Mao, Z., et al., 2021. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. J. Integr. Plant Biol. 63, 1967-1981.
    [6] Cashmore, A.R., Jarillo, J.A., Wu, Y.J., Liu, D., 1999. Cryptochromes: blue light receptors for plants and animals. Science 284, 760-765.
    [7] Castillon, A., Shen, H., Huq, E., 2007. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12, 514-521.
    [8] Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., Tang, X., Zhou, J.M., 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146, 368-376.
    [9] Cheng, M.C., Kathare, P.K., Paik, I., Huq, E., 2021. Phytochrome Signaling Networks. Annu. Rev. Plant Biol. 72, 217-244.
    [10] Choi, K., Park, C., Lee, J., Oh, M., Noh, B., Lee, I., 2007. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134, 1931-1941.
    [11] Coleman-Derr, D., Zilberman, D., 2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 8, e1002988.
    [12] Cuadrado, A., Corrado, N., Perdiguero, E., Lafarga, V., Munoz-Canoves, P., Nebreda, A.R., 2010. Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J. 29, 2014-2025.
    [13] Deal, R.B., Kandasamy, M.K., McKinney, E.C., Meagher, R.B., 2005. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell 17, 2633-2646.
    [14] Deal, R.B., Topp, C.N., McKinney, E.C., Meagher, R.B., 2007. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19, 74-83.
    [15] Dong, J., Ni, W., Yu, R., Deng, X.W., Chen, H., Wei, N., 2017. Light-Dependent Degradation of PIF3 by SCF(EBF1/2) Promotes a Photomorphogenic Response in Arabidopsis. Curr. Biol. 27, 2420-2430 e2426.
    [16] Du, S.S., Li, L., Li, L., Wei, X., Xu, F., Xu, P., Wang, W., Xu, P., Cao, X., Miao, L., et al., 2020. Photoexcited Cryptochrome2 Interacts Directly with TOE1 and TOE2 in Flowering Regulation. Plant Physiol. 184, 487-505.
    [17] Fankhauser, C., Chen, M., 2008. Transposing phytochrome into the nucleus. Trends Plant Sci. 13, 596-601.
    [18] Gangappa, S.N., Kumar, S.V., 2017. DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms. Cell Rep. 18, 344-351.
    [19] Gu, D., Chen, C.Y., Zhao, M., Zhao, L., Duan, X., Duan, J., Wu, K., Liu, X., 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res. 45, 7137-7150.
    [20] Huai, J., Zhang, X., Li, J., Ma, T., Zha, P., Jing, Y., Lin, R., 2018. SEUSS and PIF4 Coordinately Regulate Light and Temperature Signaling Pathways to Control Plant Growth. Mol. Plant 11, 928-942.
    [21] Jia, K.P., Luo, Q., He, S.B., Lu, X.D., Yang, H.Q., 2014. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7, 528-540.
    [22] Jiang, B., Shi, Y., Zhang, X., Xin, X., Qi, L., Guo, H., Li, J., Yang, S., 2017. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E6695-E6702.
    [23] Jing, Y., Zhang, D., Wang, X., Tang, W., Wang, W., Huai, J., Xu, G., Chen, D., Li, Y., Lin, R., 2013. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25, 242-256.
    [24] Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al., 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886-889.
    [25] Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., Franklin, K.A., 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408-413.
    [26] Kumar, S.V., 2018. H2A.Z at the Core of Transcriptional Regulation in Plants. Mol. Plant 11, 1112-1114.
    [27] Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., Wigge, P.A., 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245.
    [28] Kumar, S.V., Wigge, P.A., 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147.
    [29] Lazaro, A., Gomez-Zambrano, A., Lopez-Gonzalez, L., Pineiro, M., Jarillo, J.A., 2008. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. J. Exp. Bot. 59, 653-666.
    [30] Lee, K., Seo, P.J., 2017. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. PLoS One 12, e0181804.
    [31] Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A., Wigge, P.A., Schafer, E., Vierstra, R.D., Casal, J.J., 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897-900.
    [32] Leivar, P., Monte, E., 2014. PIFs: systems integrators in plant development. Plant Cell 26, 56-78.
    [33] Leivar, P., Tepperman, J.M., Monte, E., Calderon, R.H., Liu, T.L., Quail, P.H., 2009. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21, 3535-3553.
    [34] Li, J., Li, G., Wang, H., Wang Deng, X., 2011. Phytochrome signaling mechanisms. Arabidopsis Book 9, e0148.
    [35] Lian, H., Xu, P., He, S., Wu, J., Pan, J., Wang, W., Xu, F., Wang, S., Pan, J., Huang, J., et al., 2018. Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein beta Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis. Mol. Plant 11, 1248-1263.
    [36] Ling, J.J., Li, J., Zhu, D., Deng, X.W., 2017. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc. Natl. Acad. Sci. U. S. A. 114, 3539-3544.
    [37] Liu, X., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., et al., 2013. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25, 1258-1273.
    [38] Lu, X.D., Zhou, C.M., Xu, P.B., Luo, Q., Lian, H.L., Yang, H.Q., 2015. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8, 467-478.
    [39] Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., Yang, H.Q., 2005. From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. U. S. A. 102, 12270-12275.
    [40] Mao, Z., He, S., Xu, F., Wei, X., Jiang, L., Liu, Y., Wang, W., Li, T., Xu, P., Du, S., et al., 2020. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. New Phytol. 225, 848-865.
    [41] Mao, Z., Wei, X., Li, L., Xu, P., Zhang, J., Wang, W., Guo, T., Kou, S., Wang, W., Miao, L., et al., 2021. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell 33, 1961-1979.
    [42] March-Diaz, R., Garcia-Dominguez, M., Florencio, F.J., Reyes, J.C., 2007. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol. 143, 893-901.
    [43] March-Diaz, R., Garcia-Dominguez, M., Florencio, F.J., Reyes, J.C., 2007. SEF, a New Protein Required for Flowering Repression in Arabidopsis, Interacts with PIE1 and ARP6. Plant Physiol. 143, 893-901.
    [44] Ni, M., Tepperman, J.M., Quail, P.H., 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
    [45] Ni, W., Xu, S.L., Gonzalez-Grandio, E., Chalkley, R.J., Huhmer, A.F.R., Burlingame, A.L., Wang, Z.Y., Quail, P.H., 2017. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8, 15236.
    [46] Ni, W., Xu, S.L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Wang, Z.Y., Quail, P.H., 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160-1164.
    [47] Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., Wang, Z.Y., 2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3.
    [48] Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W., 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
    [49] Oyama, T., Shimura, Y., Okada, K., 1997. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983-2995.
    [50] Paik, I., Kathare, P.K., Kim, J.I., Huq, E., 2017. Expanding Roles of PIFs in Signal Integration from Multiple Processes. Mol. Plant 10, 1035-1046.
    [51] Park, E., Kim, J., Lee, Y., Shin, J., Oh, E., Chung, W.I., Liu, J.R., Choi, G., 2004. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol. 45, 968-975.
    [52] Peng, M., Li, Z., Zhou, N., Ma, M., Jiang, Y., Dong, A., Shen, W.H., Li, L., 2018. Linking PHYTOCHROME-INTERACTING FACTOR to Histone Modification in Plant Shade Avoidance. Plant Physiol. 176, 1341-1351.
    [53] Qi, L., Shi, Y., Terzaghi, W., Yang, S., Li, J., 2022. Integration of light and temperature signaling pathways in plants. J. Integr. Plant Biol. 64, 393-411.
    [54] Quail, P.H., 2002. Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol. 3, 85-93.
    [55] Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schafer, E., Nagy, F., Jenkins, G.I., et al., 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103-106.
    [56] Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., Choi, G., 2014. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
    [57] Shen, H., Zhu, L., Castillon, A., Majee, M., Downie, B., Huq, E., 2008. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20, 1586-1602.
    [58] Shen, Y., Khanna, R., Carle, C.M., Quail, P.H., 2007. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol. 145, 1043-1051.
    [59] Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., Kuai, B., 2014. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776-1787.
    [60] Sun, J., Qi, L., Li, Y., Zhai, Q., Li, C., 2013. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25, 2102-2114.
    [61] Sura, W., Kabza, M., Karlowski, W.M., Bieluszewski, T., Kus-Slowinska, M., Paweloszek, L., Sadowski, J., Ziolkowski, P.A., 2017. Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes. Plant Cell 29, 791-807.
    [62] Tong, M., Lee, K., Ezer, D., Cortijo, S., Jung, J., Charoensawan, V., Box, M.S., Jaeger, K.E., Takahashi, N., Mas, P., et al., 2020. The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant Physiol. 182, 612-625.
    [63] van der Woude, L.C., Perrella, G., Snoek, B.L., van Hoogdalem, M., Novak, O., van Verk, M.C., van Kooten, H.N., Zorn, L.E., Tonckens, R., Dongus, J.A., et al., 2019. HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc. Natl. Acad. Sci. U. S. A. 116, 25343-25354.
    [64] Wang, W., Lu, X., Li, L., Lian, H., Mao, Z., Xu, P., Guo, T., Xu, F., Du, S., Cao, X., et al., 2018. Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. Plant Cell 30, 1989-2005.
    [65] Wei, X., Wang, W., Xu, P., Wang, W., Guo, T., Kou, S., Liu, M., Niu, Y., Yang, H.Q., Mao, Z., 2021. Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in Arabidopsis. J. Integr. Plant Biol. 63, 1133-1146.
    [66] Willhoft, O., Wigley, D.B., 2020. INO80 and SWR1 complexes: the non-identical twins of chromatin remodelling. Curr. Opin. Struct. Biol. 61, 50-58.
    [67] Willige, B.C., Zander, M., Yoo, C.Y., Phan, A., Garza, R.M., Wanamaker, S.A., He, Y., Nery, J.R., Chen, H., Chen, M., et al., 2021. PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nat. Genet. 53, 955-961.
    [68] Xin, X., Chen, W., Wang, B., Zhu, F., Li, Y., Yang, H., Li, J., Ren, D., 2018. Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. J. Exp. Bot. 69, 423-439.
    [69] Xu, P., Lian, H., Xu, F., Zhang, T., Wang, S., Wang, W., Du, S., Huang, J., Yang, H.Q., 2019. Phytochrome B and AGB1 Coordinately Regulate Photomorphogenesis by Antagonistically Modulating PIF3 Stability in Arabidopsis. Mol. Plant 12, 229-247.
    [70] Xue, M., Zhang, H., Zhao, F., Zhao, T., Li, H., Jiang, D., 2021. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. Mol. Plant 14, 1799-1813.
    [71] Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S.K., Datta, S., 2020. Light signaling and UV-B-mediated plant growth regulation. J. Integr. Plant Biol. 62, 1270-1292.
    [72] Ye, B., Liu, B., Yang, L., Huang, G., Hao, L., Xia, P., Wang, S., Du, Y., Qin, X., Zhu, P., et al., 2017. Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nat. Commun. 8, 1518.
    [73] Zhang, C., Qian, Q., Huang, X., Zhang, W., Liu, X., Hou, X., 2021a. NF-YCs modulate histone variant H2A.Z deposition to regulate photomorphogenic growth in Arabidopsis. J. Integr. Plant Biol. 63, 1120-1132.
    [74] Zhang, D., Jing, Y., Jiang, Z., Lin, R., 2014a. The Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in Arabidopsis. Plant Cell 26, 2472-2485.
    [75] Zhang, D., Li, Y., Zhang, X., Zha, P., Lin, R., 2017. The SWI2/SNF2 Chromatin-Remodeling ATPase BRAHMA Regulates Chlorophyll Biosynthesis in Arabidopsis. Mol. Plant 10, 155-167.
    [76] Zhang, J.Y., He, S.B., Li, L., Yang, H.Q., 2014b. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc. Natl. Acad. Sci. U. S. A. 111, E3015-3023.
    [77] Zhang, Y., Li, N., Wang, L., 2021b. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Rep. 35, 109095.
    [78] Zhang, Y., Mayba, O., Pfeiffer, A., Shi, H., Tepperman, J.M., Speed, T.P., Quail, P.H., 2013. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet. 9, e1003244.
  • 加载中
计量
  • 文章访问数:  229
  • HTML全文浏览量:  94
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 录用日期:  2023-04-18
  • 修回日期:  2023-04-15
  • 网络出版日期:  2023-04-28

目录

    /

    返回文章
    返回