留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genomic allele-specific base editing with imperfect gRNA

Xuxu Chen Dongdong Zhao Xueting Hou Ju Li Shiming Pu Jidong Fei Siwei Li Zuping Zhou Changhao Bi Xueli Zhang

Xuxu Chen, Dongdong Zhao, Xueting Hou, Ju Li, Shiming Pu, Jidong Fei, Siwei Li, Zuping Zhou, Changhao Bi, Xueli Zhang. Genomic allele-specific base editing with imperfect gRNA[J]. 遗传学报, 2023, 50(10): 799-802. doi: 10.1016/j.jgg.2023.05.010
引用本文: Xuxu Chen, Dongdong Zhao, Xueting Hou, Ju Li, Shiming Pu, Jidong Fei, Siwei Li, Zuping Zhou, Changhao Bi, Xueli Zhang. Genomic allele-specific base editing with imperfect gRNA[J]. 遗传学报, 2023, 50(10): 799-802. doi: 10.1016/j.jgg.2023.05.010
Xuxu Chen, Dongdong Zhao, Xueting Hou, Ju Li, Shiming Pu, Jidong Fei, Siwei Li, Zuping Zhou, Changhao Bi, Xueli Zhang. Genomic allele-specific base editing with imperfect gRNA[J]. Journal of Genetics and Genomics, 2023, 50(10): 799-802. doi: 10.1016/j.jgg.2023.05.010
Citation: Xuxu Chen, Dongdong Zhao, Xueting Hou, Ju Li, Shiming Pu, Jidong Fei, Siwei Li, Zuping Zhou, Changhao Bi, Xueli Zhang. Genomic allele-specific base editing with imperfect gRNA[J]. Journal of Genetics and Genomics, 2023, 50(10): 799-802. doi: 10.1016/j.jgg.2023.05.010

Genomic allele-specific base editing with imperfect gRNA

doi: 10.1016/j.jgg.2023.05.010
基金项目: 

This work was financially supported by the National Key Research and Development Program of China (2018YFA0904900), the National Natural Science Foundation of China (32225031, 32171449, 81903776), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-017), the Tianjin Natural Science Foundation (20JCYBJC00310), and the Youth Innovation Promotion Association CAS (2022177).

详细信息
    通讯作者:

    Zuping Zhou,E-mail:192455010@qq.com

    Changhao Bi,E-mail:bi_ch@tib.cas.cn

    Xueli Zhang,E-mail:zhang_xl@tib.cas.cn

Genomic allele-specific base editing with imperfect gRNA

Funds: 

This work was financially supported by the National Key Research and Development Program of China (2018YFA0904900), the National Natural Science Foundation of China (32225031, 32171449, 81903776), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-017), the Tianjin Natural Science Foundation (20JCYBJC00310), and the Youth Innovation Promotion Association CAS (2022177).

  • Anzalone, A.V., Koblan, L.W.,Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Bae, S., Park, J.,Kim, J.S., 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
    Chen, L., Zhang, S., Xue, N., Hong, M., Zhang, X., Zhang, D., Yang, J., Bai, S., Huang, Y., Meng, H., et al., 2022. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101-110.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I.,Liu, D.R., 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Huang, T.P., Zhao, K.T., Miller, S.M., Gaudelli, N.M., Oakes, B.L., Fellmann, C., Savage, D.F.,Liu, D.R., 2019. Circularly permuted and pam-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626-631.
    Jones, S.K., Hawkins, J.A., Johnson, N.V., Jung, C., Hu, K., Rybarski, J.R., Chen, J.S., Doudna, J.A., Press, W.H.,Finkelstein, I.J., 2020. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84-93.
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T.,Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A.,Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J.,Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41-46.
    Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al., 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729.
    Porto, E.M., Komor, A.C., Slaymaker, I.M.,Yeo, G.W., 2020. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839-859.
    Rabinowitz, R.,Offen, D., 2021. Single-base resolution: increasing the specificity of the CRISPR-Cas system in gene editing. Mol. Ther. 29, 937-948.
    Sun, W.,Wang, Y., 2022. Superfi-Cas9: high fidelity meets high activity. CRISPR J. 5, 171-173.
    Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D.,Li, J., 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13, 659-662.
    Zhao, D., Jiang, G., Li, J., Chen, X., Li, S., Wang, J., Zhou, Z., Pu, S., Dai, Z., Ma, Y., et al., 2022. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Res. 50, 4161-4170.
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C.,Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  44
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 录用日期:  2023-05-22
  • 修回日期:  2023-05-19
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回