留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaoying Wu, Wenfeng Zhang, Yiyu Luo, Chaoqing Cheng, Xinjuan Wang, Yan Jiang, Shuang Li, Lingfei Luo, Yun Yang. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.05.013
Citation: Chaoying Wu, Wenfeng Zhang, Yiyu Luo, Chaoqing Cheng, Xinjuan Wang, Yan Jiang, Shuang Li, Lingfei Luo, Yun Yang. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.05.013

doi: 10.1016/j.jgg.2023.05.013

Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis

Funds: We thank Parsons, M. J. and Lieschke, G. J. for the transgenic lines and Luo lab members of Southwest University for technical help. This work was supported by the National Natural Science Foundation of China (32270859 and 32192400) and the National Key R&D Program of China (2021YFA0805000).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Alzahrani, A.S., 2019. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol. 59, 125-132.
    [2] Barca, O., Ferre, S., Seoane, M., Prieto, J.M., Lema, M., Senaris, R., Arce, V.M., 2003. Interferon beta promotes survival in primary astrocytes through phosphatidylinositol 3-kinase. J. Neuroimmunol. 139, 155-159.
    [3] Bertolotti, A., 2018. The split protein phosphatase system. Biochem. J. 475, 3707-3723.
    [4] Cai, P., Mao, X., Zhao, J., Nie, L., Jiang, Y., Yang, Q., Ni, R., He, J., Luo, L., 2021. Farnesoid X Receptor Is Required for the Redifferentiation of Bipotential Progenitor Cells During Biliary-Mediated Zebrafish Liver Regeneration. Hepatology 74, 3345-3361.
    [5] Carten, J.D., Bradford, M.K., Farber, S.A., 2011. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev. Biol. 360, 276-285.
    [6] Casamayor, A., Arino, J., 2020. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Adv. Protein Chem. Struct. Biol. 122, 231-288.
    [7] Chambers, K.F., Day, P.E., Aboufarrag, H.T., Kroon, P.A., 2019. Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 11.
    [8] Chang, C.H., Chen, Y.C., Zhang, W., Leung, P.S., Gershwin, M.E., Chuang, Y.H., 2015. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS ONE 10, e0121320.
    [9] Chen, J., He, J., Ni, R., Yang, Q., Zhang, Y., Luo, L., 2019. Cerebrovascular Injuries Induce Lymphatic Invasion into Brain Parenchyma to Guide Vascular Regeneration in Zebrafish. Dev. Cell 49, 697-710.
    [10] Chen, J., Li, X., Ni, R., Chen, Q., Yang, Q., He, J., Luo, L., 2021. Acute brain vascular regeneration occurs via lymphatic transdifferentiation. Dev. Cell 56, 3115-3127.
    [11] Chiang, J.Y.L., Ferrell, J.M., 2022. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell Endocrinol. 548, 111618.
    [12] Chu, J., Sadler, K.C., 2009. New school in liver development: lessons from zebrafish. Hepatology 50, 1656-1663.
    [13] Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., Lewis, J., 2005. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132, 1093-1104.
    [14] Cui, S., Leyva-Vega, M., Tsai, E.A., EauClaire, S.F., Glessner, J.T., Hakonarson, H., Devoto, M., Haber, B.A., Spinner, N.B., Matthews, R.P., 2013. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144, 1107-1115.
    [15] Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A., Lieschke, G.J., 2011. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117, e49-e56.
    [16] Feng, F.B., Qiu, H.Y., 2018. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother. 102, 1209-1220.
    [17] Graumann, U., Reynolds, R., Steck, A.J., Schaeren-Wiemers, N., 2003. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol. 13, 554-573.
    [18] Hall, C., Flores, M.V., Storm, T., Crosier, K., Crosier, P., 2007. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42.
    [19] Hanley, J., Dhar, D.K., Mazzacuva, F., Fiadeiro, R., Burden, J.J., Lyne, A.M., Smith, H., Straatman-Iwanowska, A., Banushi, B., Virasami, A., et al., 2017. Vps33b is crucial for structural and functional hepatocyte polarity. J. Hepatol. 66, 1001-1011.
    [20] He, J., Chen, J., Wei, X., Leng, H., Mu, H., Cai, P., Luo, L., 2019. Mammalian Target of Rapamycin Complex 1 Signaling Is Required for the Dedifferentiation From Biliary Cell to Bipotential Progenitor Cell in Zebrafish Liver Regeneration. Hepatology 70, 2092-2106.
    [21] He, J., Lu, H., Zou, Q., Luo, L., 2014. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789-800.
    [22] Hendrickx, A., Beullens, M., Ceulemans, H., Den Abt, T., Van Eynde, A., Nicolaescu, E., Lesage, B., Bollen, M., 2009. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem. Biol. 16, 365-371.
    [23] Hnasko, T.S., Hnasko, R.M., 2015. The Western Blot. Methods Mol. Biol. 1318, 87-96.
    [24] Im, C., Sapkota, Y., Moon, W., Kawashima, M., Nakamura, M., Tokunaga, K., Yasui, Y., 2018. Genome-wide haplotype association analysis of primary biliary cholangitis risk in Japanese. Sci Rep-Uk 8. 7806.
    [25] Irie, J., Wu, Y.H., Wicker, L.S., Rainbow, D., Nalesnik, M.A., Hirsch, R., Peterson, L.B., Leung, P.S.C., Cheng, C.M., Mackay, I.R., et al., 2006. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J. Exp. Med. 203, 1209-1219.
    [26] Joshita, S., Umemura, T., Tanaka, E., Ota, M., 2018. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis. Clin. J. Gastroenterol. 11, 11-18.
    [27] Kaplan, M.M., Gershwin, M.E., 2005. Primary biliary cirrhosis. N. Engl. J. Med. 353, 1261-1273.
    [28] Katafuchi, T., Makishima, M., 2022. Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int. J. Mol. Sci. 23.
    [29] Keitel, V., Droge, C., Haussinger, D., 2019. Targeting FXR in Cholestasis. Handb. Exp. Pharmacol. 256, 299-324.
    [30] Khoury, L., Zalko, D., Audebert, M., 2020. Evaluation of the genotoxic potential of apoptosis inducers with the gammaH2AX assay in human cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 852, 503165.
    [31] Kita, H., Ansari, A.A., He, X.S., Lian, Z.X., Van de Water, J., Coppel, R.L., Luketic, V., Kaplan, M., Inamori, H., Isoda, N., et al., 2003. Proteasome is required for class I-restricted presentation by Fcgamma receptor-mediated endocytosis in primary biliary cirrhosis. J. Autoimmun. 21, 175-182.
    [32] Kotlinowski, J., Hutsch, T., Czyzynska-Cichon, I., Wadowska, M., Pydyn, N., Jasztal, A., Kij, A., Dobosz, E., Lech, M., Miekus, K., et al., 2021. Deletion of Mcpip1 in Mcpip1(fl/fl)Alb(Cre) mice recapitulates the phenotype of human primary biliary cholangitis. Biochim. Biophys. Acta. Mol. Basis Dis. 1867, 166086.
    [33] Laschtowitz, A., de Veer, R.C., Van der Meer, A.J., Schramm, C., 2020. Diagnosis and treatment of primary biliary cholangitis. United European Gastroenterol J. 8, 667-674.
    [34] Li, L., Song, Y., Chen, X., Huang, Y., Liu, H., 2022. Bioinformatic analysis of differentially expressed genes and immune cell infiltration in primary biliary cholangitis patients with poor response to ursodeoxycholic acid therapy. Chinese Journal of Cellular and Molecular Immunology 38, 16-23.
    [35] Liu, C., Wu, C., Yang, Q., Gao, J., Li, L., Yang, D., Luo, L., 2016. Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction. Immunity 44, 1162-1176.
    [36] Lleo, A., Bowlus, C.L., Yang, G.X., Invernizzi, P., Podda, M., Van de Water, J., Ansari, A.A., Coppel, R.L., Worman, H.J., Gores, G.J., et al., 2010. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52, 987-998.
    [37] Lorent, K., Moore, J.C., Siekmann, A.F., Lawson, N., Pack, M., 2010. Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev. Dyn. 239, 855-864.
    [38] Lorent, K., Yeo, S.Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R.P., Pack, M., 2004. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131, 5753-5766.
    [39] Ma, W.T., Chen, D.K., 2019. Immunological abnormalities in patients with primary biliary cholangitis. Clin. Sci (Lond). 133, 741-760.
    [40] Mattner, J., Savage, P.B., Leung, P., Oertelt, S.S., Wang, V., Trivedi, O., Scanlon, S.T., Pendem, K., Teyton, L., Hart, J., et al., 2008. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3, 304-315.
    [41] Migliaccio, C., Van de Water, J., Ansari, A.A., Kaplan, M.M., Coppel, R.L., Lam, K.S., Thompson, R.K., Stevenson, F., Gershwin, M.E., 2001. Heterogeneous response of antimitochondrial autoantibodies and bile duct apical staining monoclonal antibodies to pyruvate dehydrogenase complex E2: the molecule versus the mimic. Hepatology 33, 792-801.
    [42] Montano-Loza, A.J., Hansen, B.E., Corpechot, C., Roccarina, D., Thorburn, D., Trivedi, P., Hirschfield, G., McDowell, P., Poupon, R., Dumortier, J., et al., 2019. Factors Associated With Recurrence of Primary Biliary Cholangitis After Liver Transplantation and Effects on Graft and Patient Survival. Gastroenterology 156, 96-107.
    [43] Oertelt, S., Lian, Z.X., Cheng, C.M., Chuang, Y.H., Padgett, K.A., He, X.S., Ridgway, W.M., Ansari, A.A., Coppel, R.L., Li, M.O., et al., 2006. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J. Immunol. 177, 1655-1660.
    [44] Ohgaki, R., Matsushita, M., Kanazawa, H., Ogihara, S., Hoekstra, D., van Ijzendoorn, S.C., 2010. The Na+/H+ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells. Mol. Biol. Cell 21, 1293-1304.
    [45] Onori, P., Alvaro, D., Floreani, A.R., Mancino, M.G., Franchitto, A., Guido, M., Carpino, G., De Santis, A., Angelico, M., Attili, A.F., et al., 2007. Activation of the IGF1 system characterizes cholangiocyte survival during progression of primary biliary cirrhosis. J. Histochem. Cytochem. 55, 327-334.
    [46] Parsons, M.J., Pisharath, H., Yusuff, S., Moore, J.C., Siekmann, A.F., Lawson, N., Leach, S.D., 2009. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126, 898-912.
    [47] Paul, D., Bargale, A.B., Rapole, S., Shetty, P.K., Santra, M.K., 2019. Protein Phosphatase 1 Regulatory Subunit SDS22 Inhibits Breast Cancer Cell Tumorigenesis by Functioning as a Negative Regulator of the AKT Signaling Pathway. Neoplasia 21, 30-40.
    [48] Rehman, A.U., Najafi, M., Kambouris, M., Al-Gazali, L., Makrythanasis, P., Rad, A., Maroofian, R., Rajab, A., Stark, Z., Hunter, J.V., et al., 2018. Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Hum. Mutat.
    [49] Rosowski, E.E., 2020. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis. Model Mech. 13.
    [50] Russell, D.W., 2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174.
    [51] Sadler, K.C., Amsterdam, A., Soroka, C., Boyer, J., Hopkins, N., 2005. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561-3572.
    [52] Salas, J.T., Banales, J.M., Sarvide, S., Recalde, S., Ferrer, A., Uriarte, I., Oude Elferink, R.P., Prieto, J., Medina, J.F., 2008. Ae2a,b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134, 1482-1493.
    [53] Savill, J., Dransfield, I., Gregory, C., Haslett, C., 2002. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965-975.
    [54] Selmi, C., Torok, N.J., Affronti, A., Gershwin, M.E., 2010. Genomic variants associated with primary biliary cirrhosis. Genome Med. 2, 5.
    [55] Selvaraj, A., Thomas, G., 2010. Phosphatase 2A puts the brakes on mTORC1 nutrient signaling. Cell Metab. 11, 245-247.
    [56] Sharma, P., Arias, E.B., Cartee, G.D., 2016. Protein Phosphatase 1-alpha Regulates AS160 Ser588 and Thr642 Dephosphorylation in Skeletal Muscle. Diabetes 65, 2606-2617.
    [57] Solnica-Krezel, L., Schier, A.F., Driever, W., 1994. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401-1420.
    [58] Stein, C., Caccamo, M., Laird, G., Leptin, M., 2007. Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 8, R251.
    [59] Suleiman, J., Al Hashem, A.M., Tabarki, B., Al-Thihli, K., Bi, W., El-Hattab, A.W., 2018. PPP1R21 homozygous null variants associated with developmental delay, muscle weakness, distinctive facial features, and brain abnormalities. Clin. Genet. 94, 351-355.
    [60] Takeda, K., Kojima, Y., Ikejima, K., Harada, K., Yamashina, S., Okumura, K., Aoyama, T., Frese, S., Ikeda, H., Haynes, N.M., et al., 2008. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc. Natl. Acad. Sci. U. S. A. 105, 10895-10900.
    [61] Thayyullathil, F., Chathoth, S., Shahin, A., Kizhakkayil, J., Hago, A., Patel, M., Galadari, S., 2011. Protein phosphatase 1-dependent dephosphorylation of Akt is the prime signaling event in sphingosine-induced apoptosis in Jurkat cells. J. Cell Biochem. 112, 1138-1153.
    [62] Thisse, B., Thisse, C., 2014. In situ hybridization on whole-mount zebrafish embryos and young larvae. Methods Mol. Biol. 1211, 53-67.
    [63] Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J., Schoonjans, K., 2008. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678-693.
    [64] Wakabayashi, K., Lian, Z.X., Leung, P.S., Moritoki, Y., Tsuneyama, K., Kurth, M.J., Lam, K.S., Yoshida, K., Yang, G.X., Hibi, T., et al., 2008. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48, 531-540.
    [65] Wakabayashi, K., Lian, Z.X., Moritoki, Y., Lan, R.Y., Tsuneyama, K., Chuang, Y.H., Yang, G.X., Ridgway, W., Ueno, Y., Ansari, A.A., et al., 2006a. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 44, 1240-1249.
    [66] Wakabayashi, K., Lian, Z.X., Moritoki, Y., Lan, R.Y., Tsuneyama, K., Chuang, Y.H., Yang, G.X., Ridgway, W., Ueno, Y., Ansari, A.A., et al., 2006b. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 44, 1240-1249.
    [67] Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J., Arias, I.M., 2005. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl. Acad. Sci. U. S. A. 102, 15087-15092.
    [68] Wang, J.J., Yang, G.X., Zhang, W.C., Lu, L., Tsuneyama, K., Kronenberg, M., Vela, J.L., Lopez-Hoyos, M., He, X.S., Ridgway, W.M., et al., 2014. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin. Exp. Immunol. 175, 192-201.
    [69] Wilkins, B.J., Pack, M., 2013. Zebrafish models of human liver development and disease. Compr. Physiol. 3, 1213-1230.
    [70] Wu, S.J., Yang, Y.H., Tsuneyama, K., Leung, P.S., Illarionov, P., Gershwin, M.E., Chuang, Y.H., 2011. Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 53, 915-925.
    [71] Xia, P., Gutl, D., Zheden, V., Heisenberg, C.P., 2019. Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell 176, 1379-1392.
    [72] Xiao, L., Gong, L.L., Yuan, D., Deng, M., Zeng, X.M., Chen, L.L., Zhang, L., Yan, Q., Liu, J.P., Hu, X.H., et al., 2010. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 17, 1448-1462.
    [73] Xu, Y., Shen, J., Ran, Z., 2020. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 16, 3-17.
    [74] Yang, Y., Li, Y., Fu, J., Li, Y., Li, S., Ni, R., Yang, Q., Luo, L., 2022. Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc. Natl. Acad. Sci. U. S. A. 119, e2205110119.
    [75] Yang, Y., Wang, H., He, J., Shi, W., Jiang, Z., Gao, L., Jiang, Y., Ni, R., Yang, Q., Luo, L., 2021. A single-cell-resolution fate map of endoderm reveals demarcation of pancreatic progenitors by cell cycle. Proc. Natl. Acad. Sci. U. S. A. 118.
    [76] Zhang, M., Wang, X., Liu, M., Liu, D., Pan, J., Tian, J., Jin, T., Xu, Y., An, F., 2020. Inhibition of PHLPP1 ameliorates cardiac dysfunction via activation of the PI3K/Akt/mTOR signalling pathway in diabetic cardiomyopathy. J. Cell Mol. Med. 24, 4612-4623.
    [77] Zhang, W., Wu, C., Ni, R., Yang, Q., Luo, L., He, J., 2021. Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1. PLoS Genet. 17, e1009980.
  • 加载中
计量
  • 文章访问数:  131
  • HTML全文浏览量:  51
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 录用日期:  2023-05-22
  • 修回日期:  2023-05-05
  • 网络出版日期:  2023-06-02

目录

    /

    返回文章
    返回