留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yaowen Zhang, Haibin Yu, Dandan Wang, Xiaoyun Lei, Yang Meng, Na Zhang, Fang Chen, Lu Lv, Qian Pan, Hongtao Qin, Zhuohua Zhang, Daan M.F. van Aalten, Kai Yuan. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.05.014
Citation: Yaowen Zhang, Haibin Yu, Dandan Wang, Xiaoyun Lei, Yang Meng, Na Zhang, Fang Chen, Lu Lv, Qian Pan, Hongtao Qin, Zhuohua Zhang, Daan M.F. van Aalten, Kai Yuan. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.05.014

doi: 10.1016/j.jgg.2023.05.014

Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis

Funds: We gratefully acknowledge Drs. Hong Xu, Zongzhao Zhai, Wei Song, Giacomo Cavalli, Liming Wang, Michael Levine, Hernan Garcia, the Developmental Studies Hybridoma Bank, the Bloomington Drosophila Stock Center, the core facility of Drosophila resource and technology at SIBCB, and TsingHua Fly Center for antibodies and fly stocks. We thank colleagues in the center for medical genetics, members of the Yuan lab, and Ignacy Czajweski for discussions. This project has been supported by the National Natural Science Foundation of China (grants 91853108, 92153301, 31771589, and 32170821 to K.Y, 32101034 to F.C), Department of Science & Technology of Hunan Province (grants 2017RS3013, 2017XK2011, 2018DK2015, 2019SK1012, and 2021JJ10054 to K.Y, and the innovative team program 2019RS1010), and Central South University (2018CX032 to K.Y, 2019zzts046 to Y.Z, 2019zzts339 to X.L, 2021zzts497 to H.Y, and the innovation-driven team project 2020CX016). D.M.F.v.A. is supported by Wellcome Trust Investigator Award (110061), and a Novo Nordisk Foundation Laureate award (NNF21OC0065969).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Angshuman, S., Cordula, S., 2007. An approach for immunofluorescence of Drosophila s2 cells. CSH Protoc 2007, pdb prot4760.
    [2] Capotosti, F., et al., 2011. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376-388.
    [3] Chen, K., et al., 2013. A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife 2, e00861.
    [4] Cheutin, T., Cavalli, G., 2012. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet. 8, e1002465.
    [5] Djabrayan, N.J., et al., 2019. Metabolic Regulation of Developmental Cell Cycles and Zygotic Transcription. Curr. Biol. 29, 1193-1198.
    [6] Fenckova, M., et al., 2022. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet. 18, e1010159.
    [7] Galeone, A., et al., 2020. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. Elife 9, e55596.
    [8] Galeone, A., et al., 2017. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. Elife 6, e27612.
    [9] Gambetta, M.C., Muller, J., 2014. O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell 31, 629-639.
    [10] Gambetta, M.C., et al., 2009. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93-96.
    [11] Grote, A., et al., 2005. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(Web Server issue), W526-W531.
    [12] Hamaratoglu, F., et al., 2014. Dpp/BMP signaling in flies: from molecules to biology. Semin. Cell Dev. Biol. 32, 128-136.
    [13] Hardiville, S., Hart, G.W., 2016. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin. Curr. Opin. Chem. Biol. 33, 88-94.
    [14] Hart, G.W., 2014. Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne) 5, 183.
    [15] Holley, S.A., et al., 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249-253.
    [16] Humphreys, G.B., et al., 2013. Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the embryonic epidermis of Drosophila. Dev. Biol. 381, 434-445.
    [17] Ingham, P.W., 1984. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 37, 815-823.
    [18] Jia, J., et al., 2021. A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 118.
    [19] Kim, C.A., et al., 2002. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453-457.
    [20] Liu, B., et al., 2019. A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control. Curr. Biol. 29, 1187-1192.
    [21] Loubiere, V., et al., 2017. Chromatin Immunoprecipitation Experiments from Whole Drosophila Embryos or Larval Imaginal Discs. Bio. Protoc. 7, e2327.
    [22] Mariappa, D., et al., 2018. Effects of hypo-O-GlcNAcylation on Drosophila development. J. Biol. Chem. 293, 7209-7221.
    [23] Mariappa, D., et al., 2015. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development. Biochem. J. 470, 255-262.
    [24] Moulton, M.J., et al., 2020. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev. Cell 53, 330-343.
    [25] Negreiros, E., et al., 2018. N-linked glycosylation restricts the function of Short gastrulation to bind and shuttle BMPs. Development 145.
    [26] Olivier-Van Stichelen, S., Hanover, J.A., 2015. You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr. Opin. Clin. Nutr. Metab. Care 18, 339-345.
    [27] Ong, Q., et al., 2018. O-GlcNAc as an Integrator of Signaling Pathways. Front Endocrinol (Lausanne) 9, 599.
    [28] Pravata, V.M., et al., 2020a. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett. 594, 717-727.
    [29] Pravata, V.M., et al., 2019. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc. Natl. Acad. Sci. U. S. A. 116, 14961-14970.
    [30] Pravata, V.M., et al., 2020b. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur. J. Hum. Genet. 28, 706-714.
    [31] Rao, F.V., et al., 2006. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 25, 1569-1578.
    [32] Schulz, K.N., Harrison, M.M., 2019. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221-234.
    [33] Selvan, N., et al., 2018. O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J. Biol. Chem. 293, 10810-10824.
    [34] Selvan, N., et al., 2017. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat. Chem. Biol. 13, 882-887.
    [35] Sengupta, S., et al., 2016. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE 11, e0166829.
    [36] Shafi, R., et al., 2000. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. U. S. A. 97, 5735-5739.
    [37] Sinclair, D.A., et al., 2009. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. U. S. A. 106, 13427-13432.
    [38] Strong, I.J.T., et al., 2020. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 18, e3000891.
    [39] Vaidyanathan, K., et al., 2017. Identification and characterization of a missense mutation in the O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. J. Biol. Chem. 292, 8948-8963.
    [40] Vocadlo, D.J., 2012. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr. Opin. Chem. Biol. 16, 488-497.
    [41] Willems, A.P., et al., 2017. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J. Biol. Chem. 292, 12621-12631.
    [42] Yang, X., Qian, K., 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452-465.
    [43] Yuan, K., O'Farrell, P.H., 2016. TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos. Genes Dev. 30, 579-593.
    [44] Yuan, K., et al., 2016. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View. Trends Genet. 32, 496-507.
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  36
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-17
  • 录用日期:  2023-05-18
  • 修回日期:  2023-04-30
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回