留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shuting Wang, Marco Girardello, Wei Zhang. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.001
Citation: Shuting Wang, Marco Girardello, Wei Zhang. Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.001

doi: 10.1016/j.jgg.2023.06.001

Potential and progress of studying mountain biodiversity by means of butterfly genetics and genomics

Funds: This project was supported by grants from the National Natural Science Foundation of China (32170420 and 31871271), the Beijing Natural Science Foundation (JQ19021), the Peking-Tsinghua Center for Life Science, the State Key Laboratory of Protein and Plant Gene Research, the Qidong-SLS Innovation Fund, and Benyuan Charity Young Investigator Exploration Fellowship in Life Science to W.Z.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Albre, J., Gers, C., Legal, L., 2008. Molecular phylogeny of the Erebia tyndarus (Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group combining CoxII and ND5 mitochondrial genes: A case study of a recent radiation. Mol. Phylogenet. Evol. 47, 196-210.
    [2] Almond, R.E.A., Grooten, M., Juffe Bignoli, D. & Petersen, T., (Eds), 2022. Living Planet Report 2022 — Building a nature positive society. WWF, Gland, Switzerland
    [3] Antonelli, A., Kissling, W.D., Flantua, S.G.A., Bermudez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft, H., Linder, H.P., Badgley, C., Fjeldsa, J., et al., 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718-725.
    [4] Ashton, L.A., Nakamura, A., Basset, Y., Burwell, C.J., Cao, M., Eastwood, R., Odell, E., de Oliveira, E.G., Hurley, K., Katabuchi, M., et al., 2016. Vertical stratification of moths across elevation and latitude. J. Biogeogr. 43, 59-69.
    [5] Basset, Y., Cizek, L., Cuenoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V., OEdegaard, F., Roslin, T., Schmidl, J., et al., 2012. Arthropod diversity in a tropical forest. Science 338, 1481-1484.
    [6] Beck, J., McCain, C.M., Axmacher, J.C., Ashton, L.A., Bartschi, F., Brehm, G., Choi, S.W., Cizek, O., Colwell, R.K., Fiedler, K., et al., 2017. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412-424.
    [7] Beldade, P., Brakefield, P.M., 2002. The genetics and evo-devo of butterfly wing patterns. Nat. Rev. Genet. 3, 442-452.
    [8] Bennett, K.D., Tzedakis, P.C., Willis, K.J., 1991. Quaternary Refugia of North European Trees. J. Biogeogr. 18, 103.
    [9] Brakefield, P.M., Gates, J., Keys, D., Kesbeke, F., Wijngaarden, P.J., Monteiro, A., French, V., Carroll, S.B., 1996. Development plasticity and evolution of butterfly eyespot patterns. Nature 384, 236-242.
    [10] Cardoso, P., Barton, P.S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., Fukushima, C.S., Gaigher, R., Habel, J.C., Hallmann, C.A., et al., 2020. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426.
    [11] Carroll, S.B., Gates, J., Keys, D.N., Paddock, S.W., Panganiban, G.E.F., Selegue, J.E., Williams, J.A., 1994. Pattern formation and eyespot determination in butterfly wings. Science 265, 109-114.
    [12] Cerrato, C., Rocchia, E., Brunetti, M., Bionda, R., Bassano, B., Provenzale, A., Bonelli, S., Viterbi, R., 2019. Butterfly distribution along altitudinal gradients: temporal changes over a short time period. Nat. Conserv. 34, 91-118.
    [13] Colwell, R.K., Brehm, G., Cardelus, C.L., Gilman, A.C., Longino, J.T., 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258-261.
    [14] Connolly, S.R., Keith, S.A., Colwell, R.K., Rahbek, C., 2017. Process, Mechanism, and Modeling in Macroecology. Trends Ecol. Evol. 32, 835-844.
    [15] Conservation International, https://www.conservation.org (accessed 6 Dec 2022)
    [16] Hoffman M., Koenig K., Bunting G., Costanza J., Williams, K.J.. Biodiversity Hotspots. Zenodo data, v2016.1. https://doi.org/10.5281/zenodo.3261807
    [17] Davies, R.G., Orme, C.D.L., Storch, D., Olson, V.A., Thomas, G.H., Ross, S.G., Ding, T.S., Rasmussen, P.C., Bennett, P.M., Owens, I.P.F., et al., 2007. Topography, energy and the global distribution of bird species richness. Proc. R. Soc. B Biol. Sci. 274, 1189-1197.
    [18] Davis, A.K., Nibbelink, N., Deneka, C.J., 2022. Revisiting geographic variation in melanism of monarch butterfly larvae in North America using iNaturalist photos. J. Therm. Biol. 110, 103374.
    [19] Dewan, S., Sanders, N.J., Acharya, B.K., 2022. Turnover in butterfly communities and traits along an elevational gradient in the eastern Himalaya, India. Ecosphere. 13, e3984.
    [20] Ding, W.-N., Ree, R.H., Spicer, R.A., Xing, Y.-W., 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578-581.
    [21] Dingle, H., Zalucki, M.P., Rochester, W.A., Armijo-Prewitt, T., 2005. Distribution of the monarch butterfly, Danaus plexippus (L.) (Lepidoptera: Nymphalidae), in western North America. Biol. J. Linn. Soc. 85, 491-500.
    [22] Edelman, N.B., Frandsen P.B., Miyagi M., Clavijo B., Davey J., Dikow R., Garcia-Accinelli G., van Belleghem S., Patterson N., Neafsey D.E., et al., 2021. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594-599.
    [23] Ellis, E.A., Storer, C.G., Kawahara, A.Y., 2021. De novo genome assemblies of butterflies. Gigascience 10, 1-8.
    [24] Engler, H.S., Spencer, K.C., Gilbert, L.E., 2000. Preventing cyanide release from leaves. Nature 406, 144-145.
    [25] Forister, M.L., McCall, A.C., Sanders, N.J., Fordyce, J.A., Thorne, J.H., O’Brien, J., Waetjen, D.P., Shapiro, A.M., 2010. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl. Acad. Sci. U. S. A. 107, 2088-2092.
    [26] Gallant, J.R., Imhoff, V.E., Martin, A., Savage, W.K., Chamberlain, N.L., Pote, B.L., Peterson, C., Smith, G.E., Evans, B., Reed, R.D., et al., 2014. Ancient homology underlies adaptive mimetic diversity across butterflies. Nat. Commun. 5, 4817.
    [27] Gilbert, L.E., 2003. Adaptive novelty through introgression in Heliconius wing patterns: evidence for shared genetic “tool box” from synthetic hybrid zones and a theory of diversification, in: Ecology and Evolution Taking Flight: Butterflies as Model Systems. pp. 281–318.
    [28] Gilbert, L.E., 1972. Pollen feeding and reproductive biology of Heliconius butterflies. Proc. Natl. Acad. Sci. U. S. A. 69, 1403-1407.
    [29] Girardello, M., Chapman, A., Dennis, R., Kaila, L., Borges, P.A.V., Santangeli, A., 2019. Gaps in butterfly inventory data: A global analysis. Biol. Conserv. 236, 289-295.
    [30] Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Benito Alonso, J.L., Coldea, G., Dick, J., Erschbamer, B., Fernandez Calzado, M.R., et al., 2012. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111-115.
    [31] Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz, C., 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781-1793.
    [32] Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L., 2021. Insects and recent climate change. Proc. Natl. Acad. Sci. U. S. A. 118, e2002543117.
    [33] Hautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T., Reich, P.B., 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336-340.
    [34] Herrera-Alsina, L., Algar, A.C., Bocedi, G., Gubry-Rangin, C., Lancaster, L.T., Mynard, P., Osborne, O.G., Papadopulos, A.S.T., Creer, S., Nangoy, M., et al., 2021. Ancient geological dynamics impact neutral biodiversity accumulation and are detectable in phylogenetic reconstructions. Glob. Ecol. Biogeogr. 30, 1633-1642.
    [35] Hinojosa, J.C., Monasterio, Y., Escobes, R., Dince, V., Vila, R., 2019. Erebia epiphron and Erebia orientalis: Sibling butterfly species with contrasting histories. Biol. J. Linn. Soc. 126, 338-348.
    [36] Hodkinson, I.D., 2005. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. Camb. Philos. Soc. 80, 489-513.
    [37] Jiggins, C.D., 2017. The Ecology and Evolution of Heliconius Butterflies. Oxford University Press, London.
    [38] Jiggins, C.D., Wallbank, R.W.R., Hanly, J.J., 2017. Waiting in the wings: What can we learn about gene co-option from the diversification of butterfly wing patterns? Philos. Trans. R. Soc. B Biol. Sci. 372, 20150485.
    [39] John Bongaarts, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 45, 680-681.
    [40] Joron, M., Mallet, J.L., 1998. Diversity in mimicry: paradox or paradigm? Trends Ecol. Evol. 13, 461-466.
    [41] Kaltsas, D., Dede, K., Giannaka, J., Nasopoulou, T., Kechagioglou, S., Grigoriadou, E., Raptis, D., Damos, P., Vasiliadis, I., Christopoulos, V., et al., 2018. Taxonomic and functional diversity of butterflies along an altitudinal gradient in two NATURA 2000 sites in Greece. Insect Conserv. Divers. 11, 464-478.
    [42] Kier, G., Kreft, H., Tien, M.L., Jetz, W., Ibisch, P.L., Nowicki, C., Mutke, J., Barthlott, W., 2009. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. U. S. A. 106, 9322-9327.
    [43] Kleckova, I., Konvicka, M., Klecka, J., 2014. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity. J. Therm. Biol. 41, 50-58.
    [44] Kolliopoulou, A., Swevers, L., 2014. Recent progress in RNAi research in Lepidoptera: Intracellular machinery, antiviral immune response and prospects for insect pest control. Curr. Opin. Insect Sci. 6, 28-34.
    [45] Komata, S., Lin, C.P., Iijima, T., Fujiwara, H., Sota, T., 2016. Identification of doublesex alleles associated with the female-limited Batesian mimicry polymorphism in Papilio memnon. Sci. Rep. 6, 34782.
    [46] Korner, C., 2004. Mountain biodiversity, its causes and function. Ambio. 33, 11-17.
    [47] Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., Stegen, J.C., Vellend, M., Boyle, B., Anderson, M.J., et al., 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755-1758.
    [48] Kral-O’Brien, K.C., Harmon, J.P., Antonsen, A.K., 2021. Snapshot observations demonstrate within- and across-year weather related changes in butterfly behavior. Clim. Chang. Ecol. 1, 100004.
    [49] Kreft, H., Jetz, W., 2007. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925-5930.
    [50] Kronforst, M.R., Papa, R., Linares, M., Salazar, C., Mallet, J., 2015. The functional basis of wing patterning in Heliconius butterflies: The molecules behind mimicry. Genetics 200, 1-19.
    [51] Kumar, S., Simonson, S.E., Stohlgren, T.J., 2009. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodivers. Conserv. 18, 739-763.
    [52] Kunte, K., 2009a. Female-limited mimetic polymorphism: a review of theories and a critique of sexual selection as balancing selection. Anim. Behav. 78, 1029-1036.
    [53] Kunte, K., 2009b. The diversity and evolution of batesian mimicry in Papilio swallowtail butterflies. Evolution 63, 2707-2716.
    [54] Kunte, K., Zhang, W., Tenger-Trolander, A., Palmer, D.H., Martin, A., Reed, R.D., Mullen, S.P., Kronforst, M.R., 2014. Doublesex is a mimicry supergene. Nature 507, 229-232.
    [55] Kuras, T., Benes, J., Konvic, M., 2000. Differing habitat affinities of four Erebia species (Lepidoptera: Nymphalidae, Satyrinae) in the Hruby Jesenik Mts, Czech Republic. Biologia. 55, 169-175.
    [56] Leneveu, J., Chichvarkhin, A., Wahlberg, N., 2009. Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biol. J. Linn. Soc. 97, 346-361.
    [57] Li, X.H., Zhu, X.X., Niu, Y., Sun, H., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Syst. Evol. 52, 280-288.
    [58] Lu, Y., Yang, Y., Sun, B., Yuan, J., Yu, M., Stenseth, N.C., Bullock, J.M., Obersteiner, M., 2020. Spatial variation in biodiversity loss across China under multiple environmental stressors. Sci. Adv. 6, eabd0952.
    [59] Lyons, J.I., Pierce, A.A., Barribeau, S.M., Sternberg, E.D., Mongue, A.J., De Roode, J.C., 2012. Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol. Ecol. 21, 3433-3444.
    [60] Macgregor, C.J., Thomas, C.D., Roy, D.B., Beaumont, M.A., Bell, J.R., Brereton, T., Bridle, J.R., Dytham, C., Fox, R., Gotthard, K., et al., 2019. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10.
    [61] Martin, A., Papa, R., Nadeau, N.J., Hill, R.I., Counterman, B.A., Halder, G., Jiggins, C.D., Kronforst, M.R., Long, A.D., McMillan, W.O., et al., 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl. Acad. Sci. U. S. A. 109, 12632-12637.
    [62] Martin, A., Reed, R.D., 2014. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev. Biol. 395, 367-378.
    [63] Martin, J.F., Gilles, A., Lortscher, M., Descimon, H., 2002. Phylogenetics and differentiation among the western taxa of the Erebia tyndarus group (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 75, 319-332.
    [64] Mazo-Vargas, A., Concha, C., Livraghi, L., Massardo, D., Wallbank, R.W.R., Zhang, L., Papador, J.D., Martinez-Najera, D., Jiggins, C.D., Kronforst, M.R., et al., 2017. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc. Natl. Acad. Sci. U. S. A. 114, 10701-10706.
    [65] Mazo-Vargas, A., Langmuller, A.M., Wilder, A., van der Burg, K.R.L., Lewis, J.J., Messer, P.W., Zhang, L., Martin, A., Reed, R.D., 2022. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science 378, 304-308.
    [66] McCain, C.M., 2005. Elevational gradients in diversity of small mammals. Ecology 86, 366-372.
    [67] McCoy, E.D., 1990. The distribution of insects along elevational gradients. Oikos. 58, 313.
    [68] Merrill, R.M., Wallbank, R.W.R., Bull, V., Salazar, P.C.A., Mallet, J., Stevens, M., Jiggins, C.D., 2012. Disruptive ecological selection on a mating cue. Proc. R. Soc. B Biol. Sci. 279, 4907-4913.
    [69] Doebeli M., Dieckmann U., 2003. Speciation along environmental gradients. Nature 421, 259-264.
    [70] Mittermeier, R.A., Robles-Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J., Da Fonseca, G.A.B., 2004. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregion. Cemex, Mexico City.
    [71] Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., Gascon, C., 2011. Global Biodiversity Conservation: The Critical Role of Hotspots, in: F.E. Zachos and J.C. Habel (Eds.), Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas. Heidelberg, pp. 3–22.
    [72] Monteiro, Antonia, 2014. Origin, development, and evolution of butterfly eyespots. Annu. Rev. Entomol. 60, 253-271.
    [73] Monteiro, A., Glaser, G., Stockslager, S., Glansdorp, N., Ramos, D., 2006. Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev. Biol. 6, 52.
    [74] Montejo-Kovacevich, G., Meier, J.I., Bacquet, C.N., Warren, I.A., Chan, Y.F., Kucka, M., Salazar, C., Rueda-M N., Montgomery, S.H., McMillan, W.O., et al., 2022. Repeated genetic adaptation to altitude in two tropical butterflies. Nat. Commun. 13, 4676.
    [75] Montejo-Kovacevich, G., Salazar, P.A., Smith, S.H., Gavilanes, K., Bacquet, C.N., Chan, Y.F., Jiggins, C.D., Meier, J.I., Nadeau, N.J., 2021. Genomics of altitude-associated wing shape in two tropical butterflies. Mol. Ecol. 1-43.
    [76] Montejo-Kovacevich, G., Smith, J.E., Meier, J.I., Bacquet, C.N., Whiltshire-Romero, E., Nadeau, N.J., Jiggins, C.D., 2019. Altitude and life-history shape the evolution of Heliconius wings. Evolution 73, 2436-2450.
    [77] Murugesan, S.N., Connahs, H., Matsuoka, Y., Das Gupta, M., Tiong, G.J.L., Huq, M., Gowri, V., Monroe, S., Deem, K.D., Werner, T., et al., 2022. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. Proc. Natl. Acad. Sci. U. S. A. 119, e2108661119.
    [78] Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
    [79] Nadeau, N.J., Martin, S.H., Kozak, K.M., Salazar, C., Dasmahapatra, K.K., Davey, J.W., Baxter, S.W., Blaxter, M.L., Mallet, J., Jiggins, C.D., 2013. Genome-wide patterns of divergence and gene flow across a butterfly radiation. Mol. Ecol. 22, 814-826.
    [80] Nadeau, N.J., Ruiz, M., Salazar, P., Counterman, B., Medina, J.A., Ortiz-Zuazaga, H., Morrison, A., McMillan, W.O., Jiggins, C.D., Papa, R., 2014. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 24, 1316-1333.
    [81] Nadeau, N.J., Pardo-Diaz, C., Whibley, A., Supple, M.A., Saenko, S. V., Wallbank, R.W.R., Wu, G.C., Maroja, L., Ferguson, L., Hanly, J.J., et al., 2016. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106-110.
    [82] Nahrstedt, A., Davis, R.H., 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. Part B Comp. Biochem. 75, 65-73.
    [83] Nahrstedt, A., Davis, R.H., 1981. The occurrence of the cyanoglucosides, linamarin and lotaustralin, in Acraea and Heliconius butterflies. Comp. Biochem. Physiol. -- Part B Biochem. 68, 575-577.
    [84] Naisbit, R.E., Jiggins, C.D., Mallet, J., 2001. Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proc. R. Soc. B Biol. Sci. 268, 1849-1854.
    [85] Nicholas, J.G., Marti, J.A., Hector, T.A., Anne, C., Robert, K.C., Sean, R.C., David, J.C., Robert, R.D., Gary, R.G., Jessica, L.G., et al., 2009. Patterns and causes of species richness: a general simulation model for macroecology. Ecol. Lett. 12, 873-886.
    [86] Nishikawa, H., Iijima, T., Kajitani, R., Yamaguchi, J., Ando, T., Suzuki, Y., Sugano, S., Fujiyama, A., Kosugi, S., Hirakawa, H., et al., 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat. Genet. 47, 405-409.
    [87] Nogues-Bravo, D., Araujo, M.B., Romdal, T., Rahbek, C., 2008. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216-219.
    [88] Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J., Peet, R.K., 2015. How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Divers. Distrib. 21, 236-244.
    [89] Oliver, T.H., Marshall, H.H., Morecroft, M.D., Brereton, T., Prudhomme, C., Huntingford, C., 2015. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941-946.
    [90] Orteu, A., Jiggins, C.D., 2020. The genomics of coloration provides insights into adaptive evolution. Nat. Rev. Genet. 21, 461-475.
    [91] Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., et al., 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583.
    [92] Palmer, D.H., Kronforst, M.R., 2020. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat. Commun. 11, 6.
    [93] Panganiban, G., Nagy, L., Carroll, S.B., 1994. The role of the Distal-less gene in the development and evolution of insect limbs. Curr. Biol. 4, 671-675.
    [94] Pardo-Diaz, C., Salazar, C., Baxter, S.W., Merot, C., Figueiredo-Ready, W., Joron, M., McMillan, W.O., Jiggins, C.D., 2012. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 8, e1002752.
    [95] Pellissier, L., Fiedler, K., Ndribe, C., Dubuis, A., Pradervand, J.N., Guisan, A., Rasmann, S., 2012. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol. Evol. 2, 1818-1825.
    [96] Pena, C., Witthauer, H., Kleckova, I., Fric, Z., Wahlberg, N., 2015. Adaptive radiations in butterflies: Evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biol. J. Linn. Soc. 116, 449-467.
    [97] Pereira Gomes, J., Bet Stedille, L.I., de Freitas Milani, J.E., Montibeller-Silva, K., Mantovani, A., Lopes da Costa Bortoluzzi, R., 2020. Beta diversity as an indicator of priority areas for Myrtaceae assemblage conservation in Subtropical Araucaria Forest. Biodivers. Conserv. 29, 1361-1379.
    [98] Pyrcz, T.W., Wojtusiak, J., 2002. The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Merida, Venezuela) with remarks on their diversity and parapatric distribution. Glob. Ecol. Biogeogr. 11, 211-221.
    [99] Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.OE., Richardson, K., Rosing, M.T., Whittaker, R.J., et al., 2019a. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114-1119.
    [100] Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R.J., Fjeldsa, J., 2019b. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108-1113.
    [101] Rahbek, C., Borregaard, M.K., Hermansen, B., Nogues-Bravo, D., Fjeldså, J., 2019c. Mountain Regions of the World. https://macroecology.ku.dk/resources/mountain-regions/mountain-regions-of-the-world/ (accessed 27 Dec, 2022)
    [102] Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B., Graves, G.R., 2007. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B Biol. Sci. 274, 165-174.
    [103] Rahbek, C., Graves, G.R., 2001. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. U. S. A. 98, 4534-4539.
    [104] Rangel, T.F., Edwards, N.R., Holden, P.B., Diniz-Filho, J.A.F., Gosling, W.D., Coelho, M.T.P., Cassemiro, F.A.S., Rahbek, C., Colwell, R.K., 2018. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science. 361, eaar5452.
    [105] Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen, R., et al., 2011. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science. 333, 1137-1141.
    [106] Reppert, S.M., de Roode, J.C., 2018. Demystifying monarch butterfly migration. Curr. Biol. 28, R1009-R1022.
    [107] Rodriguez, P., Arita, H.T., 2004. Beta diversity and latitude in North American mammals: Testing the hypothesis of covariation. Ecography. 27, 547-556.
    [108] Roth, T., Plattner, M., Amrhein, V., 2014. Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9, e82490.
    [109] Rodder, D., Schmitt, T., Gros, P., Ulrich, W., Habel, J.C., 2021. Climate change drives mountain butterflies towards the summits. Sci. Rep. 11, 14382.
    [110] Shafer, A.B.A., Cote, S.D., Coltman, D.W., 2011. Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate. Evolution 65, 125-138.
    [111] Shannon C E, W.W., 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press.
    [112] Simpson, E.H., 1949. Measurement of diversity. Nature. 163, 688-688.
    [113] Soininen, J., Lennon, J.J., Hillebrand, H., 2007. A multivariate analysis of beta diversity across organisms and environments. Ecology 88, 2830-2838.
    [114] Szewczyk, T., McCain, C.M., 2016. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404.
    [115] Tennent, W.J., 2008. A checklist of the satyrine genus Erebia (Lepidoptera) (1758-2006). Zootaxa. 1-109.
    [116] Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A., et al., 2011. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57, 231-245.
    [117] The Heliconius Genome Consortium, 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 487, 94-98.
    [118] Thomas, J., 2005. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. B Biol. Sci. 360, 339-357.
    [119] Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., Legendre, F., 2017. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132.
    [120] Tuomisto, H., 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography. 33, 2-22.
    [121] Tuomisto, H., 2010b. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography. 33, 23-45.
    [122] Valencia, B.G., Matthews-Bird, F., Urrego, D.H., Williams, J.J., Gosling, W.D., Bush, M., 2016. Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytol. 212, 510-522.
    [123] Van Belleghem, S.M., Rastas, P., Papanicolaou, A., Martin, S.H., Arias, C.F., Supple, M.A., Hanly, J.J., Mallet, J., Lewis, J.J., Hines, H.M., et al., 2017. Complex modular architecture around a simple toolkit of wing pattern genes. Nat. Ecol. Evol. 1, 1-12.
    [124] van Nieukerken E, Kaila L, Kitching I, Kristensen NP, Lees D, Minet J, Mitter J, Mutanen M, Regier J, Simonsen T et al., 2011. Order Lepidoptera Linnaeus, 1758. Zootaxa. 3148, 212-221.
    [125] van Schooten, B., Melendez-Rosa, J., Van Belleghem, S.M., Jiggins, C.D., Tan, J.D., McMillan, W.O., Papa, R., 2020. Divergence of chemosensing during the early stages of speciation. Proc. Natl. Acad. Sci. U. S. A. 117, 16438-16447.
    [126] Vila, M., Vidal-Romani, J.R., Bjorklund, M., 2005. The importance of time scale and multiple refugia: Incipient speciation and admixture of lineages in the butterfly Erebia triaria (Nymphalidae). Mol. Phylogenet. Evol. 36, 249-260.
    [127] Wang, S., Teng, D., Li, X., Yang, P., Da, W., Zhang, Yiming, Zhang, Yubo, Liu, G., Zhang, X., Wan, W., et al., 2022. The evolution and diversification of oakleaf butterflies. Cell. 185, 3138-3152.
    [128] Warren, M.S., Maes, D., van Swaay, C.A.M., Goffart, P., van Dyck, H., Bourn, N.A.D., Wynhoff, I., Hoare, D., Ellis, S., 2021. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. U. S. A. 118, e2002551117.
    [129] Waterhouse, R.M., Seppey, M., Simao, F.A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E. V., Zdobnov, E.M., 2018. BUSCO Applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543-548.
    [130] Wettstein, W., Schmid, B., 1999. Conservation of arthropod diversity in montane wetlands: Effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J. Appl. Ecol. 36, 363-373.
    [131] Whittaker, R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279-338.
    [132] Wilson, R.J., Gutierrez, D., Gutierrez, J., Monserrat, V.J., 2007. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Chang. Biol. 13, 1873-1887.
    [133] Wu, N., Evans, E., van Schooten, B., Melendez-Rosa, J., Ortiz, Y., Planas Soto-Navarro, S.M., Van Belleghem, S.M., Counterman, B.A., Papa, R., Zhang, W., 2022. Widespread gene expression divergence in butterfly sensory tissues plays a fundamental role during reproductive isolation and speciation. Mol. Biol. Evol. 39, msac225.
    [134] Xu, W., Dong, W.-J., Fu, T.-T., Gao, W., Lu, C.-Q., Yan, F., Wu, Y.-H., Jiang, K., Jin, J.-Q., Chen, H.-M., et al., 2021. Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. Natl. Sci. Rev. 8, nwaa263.
    [135] Yang W., Ma K., Kreft H., 2013. Geographical sampling bias in a large distributional database and its effects on species richness-environment models. J. Biogeogr. 40, 1415-1426.
    [136] Zaccardi, G., Kelber, A., Sison-Mangus, M.P., Briscoe, A.D., 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944-1955.
    [137] Zhan, S., Merlin C., Boore, J.L., Reppert, S.M., 2011. The monarch butterfly genome yields insights into long-distance migration. Cell. 147, 1171-1185.
    [138] Zhan, S., Zhang, W., Niitepold, K., Hsu, J., Haeger, J.F., Zalucki, M.P., Altizer, S., de Roode, J.C., Reppert, S.M., Kronforst, M.R., 2014. The genetics of monarch butterfly migration and warning colouration. Nature. 514, 317-321.
    [139] Zhang, L., Mazo-Vargas, A., Reed, R.D., 2017. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc. Natl. Acad. Sci. U. S. A. 114, 10707-10712.
    [140] Zhang, L., and Reed, R.D. (2017). A practical guide to CRISPR/Cas9 genome editing in Lepidoptera. In Diversity and Evolution of butterfly Wing Patterns. Springer, Sinagpore, pp. 155–172.
    [141] Zhang, W., Dasmahapatra, K.K., Mallet, J., Moreira, G.R.P., Kronforst, M.R., 2016. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 25.
    [142] Zhang, W., Westerman, E., Nitzany, E., Palmer, S., Kronforst, M.R., 2017. Tracing the origin and evolution of supergene mimicry in butterflies. Nat. Commun. 8, 1269.
    [143] Zhang, Y., Teng, D., Lu, W., Liu, M., Zeng, H., Cao, L., Southcott, L., Potdar, S., Westerman, E., Zhu, A.J., et al., 2021. A widely diverged locus involved in locomotor adaptation in Heliconius butterflies. Sci. Adv. 7, eabh2340.
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  37
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 录用日期:  2023-06-05
  • 修回日期:  2023-06-04
  • 网络出版日期:  2023-06-10

目录

    /

    返回文章
    返回