留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense

Zhu Deng Hui Chen Lingling Xiao Haolan Jin Qinhao Zhang Renjie Jiao Chuanxian Wei

Zhu Deng, Hui Chen, Lingling Xiao, Haolan Jin, Qinhao Zhang, Renjie Jiao, Chuanxian Wei. Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense[J]. 遗传学报. doi: 10.1016/j.jgg.2023.06.003
引用本文: Zhu Deng, Hui Chen, Lingling Xiao, Haolan Jin, Qinhao Zhang, Renjie Jiao, Chuanxian Wei. Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense[J]. 遗传学报. doi: 10.1016/j.jgg.2023.06.003
Zhu Deng, Hui Chen, Lingling Xiao, Haolan Jin, Qinhao Zhang, Renjie Jiao, Chuanxian Wei. Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.003
Citation: Zhu Deng, Hui Chen, Lingling Xiao, Haolan Jin, Qinhao Zhang, Renjie Jiao, Chuanxian Wei. Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.003

Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense

doi: 10.1016/j.jgg.2023.06.003
基金项目: 

This study has been financially supported by the National Key R&D Program of China (2021YFA0805800 and 2020YFA0803202 to R.J.), the National Natural Science Foundation of China (31970538 to R.J., 32100703 to C.W.), Guangzhou Medical University Discipline Construction Funds (Basic Medicine) (JCXKJS2022A02 to R.J.), the 111 Project (D18010 to R.J.), the Local Innovative and Research Teams Project of Guangdong Perl River Talents Program (2017BT01S155 to R.J.), the Special Innovation Projects of Universities in Guangdong Province (2022KTSCX096 to C.W.), and the grant of the State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (GHMJLRID-Z-202106 to C.W.).

详细信息
    通讯作者:

    Renjie Jiao,E-mail:rjiao@gzhmu.edu.cn

    Chuanxian Wei,E-mail:weichuanxian@gzhmu.edu.cn

Gain of function screen of PATs reveals an essential role of Hip14 in Drosophila host defense

Funds: 

This study has been financially supported by the National Key R&D Program of China (2021YFA0805800 and 2020YFA0803202 to R.J.), the National Natural Science Foundation of China (31970538 to R.J., 32100703 to C.W.), Guangzhou Medical University Discipline Construction Funds (Basic Medicine) (JCXKJS2022A02 to R.J.), the 111 Project (D18010 to R.J.), the Local Innovative and Research Teams Project of Guangdong Perl River Talents Program (2017BT01S155 to R.J.), the Special Innovation Projects of Universities in Guangdong Province (2022KTSCX096 to C.W.), and the grant of the State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (GHMJLRID-Z-202106 to C.W.).

  • Ballabio, A. and J. S. Bonifacino 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101-118.
    Bannan, B. A., Etten, J. V., Kohler J. A., Tsoi, Y., Hansen, N. M., Sigmon, S., Fowler, E., Buff H., Williams, T. S., Ault, J. G., et al., 2008. The Drosophila protein palmitoylome: characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases. Fly (Austin) 2, 198-214.
    Buchon, N., Silverman, N., Cherry, S., 2014. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796-810.
    Chaudhry, N., Sica, M., Surabhi, S., Hernandez, D. S., Mesquita, A., Selimovic, A., Riaz, A., Lescat, L., Bai, H., MacIntosh, G. C., et al., 2022. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 18, 2443-2458.
    Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K., Wu, X., 2018. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem.Biol. 25, 817-831.
    Chesarino, N. M., Hach, J. C., Chen, J. L., Zaro, B. W., Rajaram, M. V., Turner, J., Schlesinger, L. S., Pratt, M. R., Hang, H. C., Yount, J. S., 2014. "Chemoproteomics reveals Toll-like receptor fatty acylation." BMC Biol. 12, 91.
    Diskin, C., Ryan, T. A. J., O'Neill, L. A. J., 2021. Modification of proteins by metabolites in immunity. Immunity 54, 19-31.
    Jiang, H., Zhang, X., Chen, X., Aramsangtienchai, P., Tong, Z., Lin, H., 2018. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919-988.
    Kim, Y. C., Lee, S. E., Kim, S. K., Jang, H. D., Hwang, I., Jin, S., Hong, E. B., Jang, K. S., Kim, H. S., 2019. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation. Nat. Chem. Biol. 15, 907-916.
    Lawrence, R. E. and Zoncu, R., 2019. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133-142.
    Leader, D. P., Krause, S. A., Pandit, A., Davies, S. A., Dow, J. A. T., 2018. FlyAtlas 2:a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res. 46, D809-D815.
    Li, X., Rydzewski, N., Hider, A., Zhang, X., Yang, J., Wang, W., Gao, Q., Cheng, X., Xu, H., 2016. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404-417.
    Liu, J. and Cao, X., 2016. Cellular and molecular regulation of innate inflammatory responses. Cell. Mol. Immunol. 13, 711-721.
    Lu, Y., Zheng, Y., Coyaud, É., Zhang, C., Selvabaskaran, A., Yu, Y., Xu, Z., Weng, X., Chen, J. S., Meng, Y., et al., 2019. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science 366, 460-467.
    Mathur, P., De Barros Santos, C., Lachuer, H., Patat, J., Latgé, B., Radvanyi, F., Goud, B., Schauer, K., 2023. Transcription factor EB regulates phosphatidylinositol-3-phosphate levels that control lysosome positioning in the bladder cancer model.Commun. Biol. 6, 114.
    Mukai, K., Konno, H., Akiba, T., Uemura, T., Waguri, S., Kobayashi, T., Barber, G. N., Arai, H., Taguchi, T., 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932.
    Ning, W., Jiang, P., Guo, Y., Wang, C., Tan, X., Zhang, W., Peng, D., Xue, Y., 2021. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins." Brief Bioinform. 22, 1836-1847.
    Porcellato, E., González-Sánchez, J. C., Ahlmann-Eltze, C., Elsakka, M. A., Shapira, I., Fritsch, J., Navarro, J. A., Anders, S., Russell, R. B., Wieland, F. T., et al., 2022. The S-palmitoylome and DHHC-PAT interactome of Drosophila melanogaster S2R+ cells indicate a high degree of conservation to mammalian palmitoylomes. PLoS ONE 17, e0261543.
    Sun, Y. and Du, K., 2022. DHHC17 is a new regulator of AMPK signaling. Mol. Cell Biol. 42, e0013122.
    Wang, L., Cai, J., Zhao, X., Ma, L., Zeng, P., Zhou, L., Liu, Y., Yang, S., Cai, Z., Zhang, S., et al., 2023. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol. Cell 83, 281-297.
  • 加载中
计量
  • 文章访问数:  167
  • HTML全文浏览量:  74
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-25
  • 录用日期:  2023-06-08
  • 修回日期:  2023-05-29
  • 网络出版日期:  2023-06-20

目录

    /

    返回文章
    返回