留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity

Jinming Mu Sin Man Lam Guanghou Shui

Jinming Mu, Sin Man Lam, Guanghou Shui. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity[J]. 遗传学报. doi: 10.1016/j.jgg.2023.06.006
引用本文: Jinming Mu, Sin Man Lam, Guanghou Shui. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity[J]. 遗传学报. doi: 10.1016/j.jgg.2023.06.006
Jinming Mu, Sin Man Lam, Guanghou Shui. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.006
Citation: Jinming Mu, Sin Man Lam, Guanghou Shui. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.06.006

Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity

doi: 10.1016/j.jgg.2023.06.006
基金项目: 

This work was financially supported by grants from National Key R&D Program of China (2018YFA0506900, 2018YFA0800901), National Natural Science Foundation of China NSFC92057202, and the Chinese Academy of Sciences (XDB39050900).

详细信息
    通讯作者:

    Sin Man Lam,Email:smlam@genetics.ac.cn

    Guanghou Shui,Email:ghshui@genetics.ac.cn

Emerging roles and therapeutic potentials of sphingolipids in pathophysiology —— emphasis on fatty acyl heterogeneity

Funds: 

This work was financially supported by grants from National Key R&D Program of China (2018YFA0506900, 2018YFA0800901), National Natural Science Foundation of China NSFC92057202, and the Chinese Academy of Sciences (XDB39050900).

  • 摘要: Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
  • Akhiyat, N., Vasile, V., Ahmad, A., Sara, J.D., Nardi, V., Lerman, L.O., Jaffe, A., Lerman, A., 2022. Plasma Ceramide Levels Are Elevated in Patients With Early Coronary Atherosclerosis and Endothelial Dysfunction. J. Am. Heart Assoc. 11, e022852.
    Atilla-Gokcumen, G.E., Muro, E., Relat-Goberna, J., Sasse, S., Bedigian, A., Coughlin, M.L., Garcia-Manyes, S., Eggert, U.S., 2014. Dividing cells regulate their lipid composition and localization. Cell 156, 428-439.
    Barklis, E., Alfadhli, A., Kyle, J.E., Bramer, L.M., Bloodsworth, K.J., Barklis, R.L., Leier, H.C., Petty, R.M., Zelnik, I.D., Metz, T.O., et al., 2021. Ceramide synthase 2 deletion decreases the infectivity of HIV-1. J. Biol. Chem. 296, 100340.
    Błachnio-Zabielska, A.U., Roszczyc-Owsiejczuk, K., Imierska, M., Pogodzińska, K., Rogalski, P., Daniluk, J., Zabielski, P., 2022. CerS1 but Not CerS5 Gene Silencing, Improves Insulin Sensitivity and Glucose Uptake in Skeletal Muscle. Cells 11, e206.
    Bouscary, A., Quessada, C., Rene, F., Spedding, M., Turner, B.J., Henriques, A., Ngo, S.T., Loeffler, J.P., 2021. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin. Cell Dev. Bio.l 112, 82-91.
    Brockman, H.L., Momsen, M.M., Brown, R.E., He, L., Chun, J., Byun, H.S., Bittman, R., 2004. The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys. J. 87, 1722-1731.
    Canafoglia, L., Franceschetti, S., Gambardella, A., Striano, P., Giallonardo, A.T., Tinuper, P., Di Bonaventura, C., Michelucci, R., Ferlazzo, E., Granata, T., et al., 2021. Progressive Myoclonus Epilepsies: Diagnostic Yield With Next-Generation Sequencing in Previously Unsolved Cases.Neurol. Genet. 7, e641.
    Cao, M., Zhang, S., Lam, S.M., Shui, G., 2022. Hepatic loss of CerS2 induces cell division defects via a mad2-mediated pathway. Clin. Transl. Med. 12, e712.
    Cardoso-Moreira, M., Halbert, J., Valloton, D., Velten, B., Chen, C., Shao, Y., Liechti, A., Ascencao, K., Rummel, C., Ovchinnikova, S., et al., 2019. Gene expression across mammalian organ development. Nature 571, 505-509.
    Carlier, A., Phan, F., Szpigel, A., Hajduch, E., Salem, J.E., Gautheron, J., Le Goff, W., Guerin, M., Lachkar, F., Ratziu, V., et al., 2020. Dihydroceramides in Triglyceride-Enriched VLDL Are Associated with Nonalcoholic Fatty Liver Disease Severity in Type 2 Diabetes. Cell Rep. Med. 1, 100154.
    Chaurasia, B., Tippetts, T.S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J.L., Sweeney, C.R., Pereira, R.F., Sumida, D.H., et al., 2019. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386-392.
    Chen, W., Wu, C., Chen, Y., Guo, Y., Qiu, L., Liu, Z., Sun, H., Chen, S., An, Z., Zhang, Z., et al., 2021. Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int. J. Oral Sci. 13, 10.
    Chen, X., Li, J., Gao, Z., Yang, Y., Kuang, W., Dong, Y., Chua, G.H., Huang, X., Jiang, B., Tian, H., et al., 2022. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl. Sci. Rev. 9, nwac148.
    Contreras, F.X., Ernst, A.M., Haberkant, P., Bjorkholm, P., Lindahl, E., Gonen, B., Tischer, C., Elofsson, A., von Heijne, G., Thiele, C., et al., 2012. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525-529.
    Cutler, R.G., Thompson, K.W., Camandola, S., Mack, K.T., Mattson, M.P., 2014. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans. Mech. Ageing Dev. 143, 9-18.
    Dany, M., Gencer, S., Nganga, R., Thomas, R.J., Oleinik, N., Baron, K.D., Szulc, Z.M., Ruvolo, P., Kornblau, S., Andreeff, M., et al., 2016. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 128, 1944-1958.
    Dany, M., 2017. Sphingosine metabolism as a therapeutic target in cutaneous melanoma. Transl.Res. 185, 1-12.
    Doktorova, M., Symons, J.L., Levental, I., 2020. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat. Chem. Biol. 16, 1321-1330.
    Dominguez, L., Foster, L., Straub, J.E., Thirumalai, D., 2016. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc. Natl. Acad. Sci. U. S. A. 113, 5281-5287.
    Ebel, P., Imgrund, S., Vom Dorp, K., Hofmann, K., Maier, H., Drake, H., Degen, J., Dörmann, P., Eckhardt, M., Franz, T., et al., 2014. Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 461, 147-158.
    Eckl, K.M., Tidhar, R., Thiele, H., Oji, V., Hausser, I., Brodesser, S., Preil, M.L., Onal-Akan, A., Stock, F., Müller, D., et al., 2013. Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J. Invest.Dermatol. 133, 2202-2211.
    El-Hindi, K., Brachtendorf, S., Hartel, J.C., Oertel, S., Birod, K., Merz, N., Trautmann, S., Thomas, D., Weigert, A., Schäufele, T.J., et al., 2022. T-Cell-Specific CerS4 Depletion Prolonged Inflammation and Enhanced Tumor Burden in the AOM/DSS-Induced CAC Model. Int. J. Mol. Sci. 23, 1866.
    Ejsing, C.S., Sampaio, J.L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R.W., Simons, K., Shevchenko, A., 2009. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 106, 2136-2141.
    Endapally, S., Frias, D., Grzemska, M., Gay, A., Tomchick, D.R., Radhakrishnan, A., 2019.Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes.Cell 176, 1040-1053.
    Fan, S.H., Wang, Y.Y., Lu, J., Zheng, Y.L., Wu, D.M., Zhang, Z.F., Shan, Q., Hu, B., Li, M.Q., Cheng, W., 2015. CERS2 suppresses tumor cell invasion and is associated with decreased V-ATPase and MMP-2/MMP-9 activities in breast cancer. J. Cell Biochem. 116, 502-513.
    Fekry, B., Jeffries, K.A., Esmaeilniakooshkghazi, A., Ogretmen, B., Krupenko, S.A., Krupenko, N.I., 2016. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress. J. Biol. Chem. 291, 16586-16596.
    Ferreira, N.S., Engelsby, H., Neess, D., Kelly, S.L., Volpert, G., Merrill, A.H., Futerman, A.H., Færgeman, N.J., 2017. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein. J. Biol. Chem. 292, 7588-7597.
    Frallicciardi, J., Melcr, J., Siginou, P., Marrink, S.J., Poolman, B., 2022. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes.Nat. Commun. 13, 1605.
    Frolov, V.A., Shnyrova, A.V., Zimmerberg, J., 2011. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3, a004747.
    Garic, D., De Sanctis, J.B., Shah, J., Dumut, D.C., Radzioch, D., 2019. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain.Prog. Lipid Res. 74, 130-144.
    Gencer, S., Oleinik, N., Kim, J., Panneer Selvam, S., De Palma, R., Dany, M., Nganga, R., Thomas, R.J., Senkal, C.E., Howe, P.H., et al., 2017. TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci. Signal. 10, eaam7464.
    Godeiro Junior, C.O., Vale, T.C., Afonso, C.O.M., Kok, F., Pedroso, J.L., Barsottini, O.G., 2018.Progressive Myoclonic Epilepsy Type 8 Due to CERS1 Deficiency: A Novel Mutation with Prominent Ataxia. Mov. Disord. Clin. Pract. 5, 330-332.
    Gomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., Gomez-Munoz, A., 2020. Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 64, 579-589.
    Gosejacob, D., Jäger, P.S., Vom Dorp, K., Frejno, M., Carstensen, A.C., Köhnke, M., Degen, J., Dörmann, P., Hoch, M., 2016. Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity. J. Biol. Chem. 291, 6989-7003.
    Guastafierro, T., Bacalini, M.G., Marcoccia, A., Gentilini, D., Pisoni, S., Di Blasio, A.M., Corsi, A., Franceschi, C., Raimondo, D., Spanò, A., et al., 2017. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin. Epigenetics 9, 92.
    Guenther, G.G., Peralta, E.R., Rosales, K.R., Wong, S.Y., Siskind, L.J., Edinger, A.L., 2008.Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc. Natl. Acad.Sci. U. S. A. 105, 17402-17407.
    Hadas, Y., Vincek, A.S., Youssef, E., Zak, M.M., Chepurko, E., Sultana, N., Sharkar, M.T.K., Guo, N., Komargodski, R., Kurian, A.A., et al., 2020. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation 141, 916-930.
    Hammerschmidt, P., Ostkotte, D., Nolte, H., Gerl, M.J., Jais, A., Brunner, H.L., Sprenger, H.G., Awazawa, M., Nicholls, H.T., Turpin-Nolan, S.M., et al., 2019. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell 177, 1536-1552.
    Harayama, T., and Riezman, H., 2018. Understanding the diversity of membrane lipid composition.Nat. Rev. Mol. Cell Biol. 19, 281-296.
    Holmes, R.S., Barron, K.A., Krupenko, N.I., 2018. Ceramide Synthase 6: Comparative Analysis, Phylogeny and Evolution. Biomolecules 8, 111.
    Holthuis, J.C., Menon, A.K., 2014. Lipid landscapes and pipelines in membrane homeostasis.Nature 510, 48-57.
    Huang, Y., Huang, S., Lam, S.M., Liu, Z., Shui, G., Zhang, Y.Q., 2016. Acsl, the Drosophila ortholog of intellectual-disability-related ACSL4, inhibits synaptic growth by altered lipids. J. Cell Sci. 129, 4034-4045.
    Ikonen, E., Zhou, X., 2021. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev. Cell 56, 1430-1436.
    Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K., Willecke, K., 2009. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549-33560.
    Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., et al., 2012. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586-608.
    Jensen, S.A., Calvert, A.E., Volpert, G., Kouri, F.M., Hurley, L.A., Luciano, J.P., Wu, Y., Chalastanis, A., Futerman, A.H., Stegh, A.H., 2014. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma.Proc. Natl. Acad. Sci. U. S. A. 111, 5682-5687.
    Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y., Inokuchi, J., 2007. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3in the state of insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 104, 13678-13683.
    Karahatay, S., Thomas, K., Koybasi, S., Senkal, C.E., Elojeimy, S., Liu, X., Bielawski, J., Day, T.A., Gillespie, M.B., Sinha, D., et al., 2007. Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett. 256, 101-111.
    Khan, S.R., Manialawy, Y., Obersterescu, A., Cox, B.J., Gunderson, E.P., Wheeler, M.B., 2020.Diminished Sphingolipid Metabolism, a Hallmark of Future Type 2 Diabetes Pathogenesis, Is Linked to Pancreatic β Cell Dysfunction. iScience 23, 101566.
    Kim, M.H., Ahn, H.K., Lee, E.J., Kim, S.J., Kim, Y.R., Park, J.W., Park, W.J., 2017. Hepatic inflammatory cytokine production can be regulated by modulating sphingomyelinase and ceramide synthase 6. Int. J. Mol. Med. 39, 453-462.
    Kong, T., He, Z., Wang, S., Jiang, C., Zhu, F., Gao, J., Li, L., Wang, Y., Xie, Q., Li, Y., 2022.Diterpenoid DGA induces apoptosis via endoplasmic reticulum stress caused by changes in glycosphingolipid composition and inhibition of STAT3 in glioma cells. Biochem. Pharmacol. 205, 115254.
    Kornhuber, J., Muller, C.P., Becker, K.A., Reichel, M., Gulbins, E., 2014. The ceramide system as a novel antidepressant target. Trends Pharmacol. Sci. 35, 293-304.
    Lam, S.M., Wang, Y., Duan, X., Wenk, M.R., Kalaria, R.N., Chen, C.P., Lai, M.K.P., Shui, G., 2014. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol.Aging 35, 2369-2381.
    Lam, S.M., Wang, R., Miao, H., Li, B., Shui, G., 2018. An integrated method for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal development up to reproductive senescence. Anal. Chim. Acta. 1037, 152-158.
    Lam, S.M., Zhang, C., Wang, Z., Ni, Z., Zhang, S., Yang, S., Huang, X., Mo, L., Li, J., Lee, B., et al., 2021. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909-922.
    Laviad, E.L., Kelly, S., Merrill, A.H., Jr., Futerman, A.H., 2012. Modulation of ceramide synthase activity via dimerization. J. Biol. Chem. 287, 21025-21033.
    Law, B.A., Liao, X., Moore, K.S., Southard, A., Roddy, P., Ji, R., Szulc, Z., Bielawska, A., Schulze, P.C., Cowart, L.A., 2018. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB. J. 32, 1403-1416.
    Li, B., Qin, Y., Yu, X., Xu, X., Yu, W., 2022. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif. 55, e13167.
    Liao, J., Guan, Y., Chen, W., Shi, C., Yao, D., Wang, F., Lam, S.M., Shui, G., and Cao, X., 2019.ACBD3 is required for FAPP2 transferring glucosylceramide through maintaining the Golgi integrity. J. Mol. Cell Biol. 11, 107-117.
    Liu, N.J., Hou, L.P., Bao, J.J., Wang, L.J., Chen, X.Y., 2021. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. Plant Commun. 2, 100214.
    Lone, M.A., Hulsmeier, A.J., Saied, E.M., Karsai, G., Arenz, C., von Eckardstein, A., Hornemann, T., 2020. Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proc. Natl. Acad. Sci. U. S. A. 117, 15591-15598.
    Lu, P., White-Gilbertson, S., Beeson, G., Beeson, C., Ogretmen, B., Norris, J., Voelkel-Johnson, C., 2021. Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers 13, 2212.
    Luo, Y., Yang, S., Wu, X., Takahashi, S., Sun, L., Cai, J., Krausz, K.W., Guo, X., Dias, H.B., Gavrilova, O., et al., 2021. Intestinal MYC modulates obesity-related metabolic dysfunction. Nat.Metab. 3, 923-939.
    Magalhaes, M.A., Glogauer, M., 2010. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J. Leukoc. Biol. 87, 545-555.
    Manzanares-Estreder, S., Pascual-Ahuir, A., Proft, M., 2017. Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast. Oxid. Med. Cell Longev. 2017, 2708345.
    Marfia, G., Navone, S., Guarnaccia, L., Campanella, R., Mondoni, M., Locatelli, M., Barassi, A., Fontana, L., Palumbo, F., Garzia, E., et al., 2021. Decreased serum level of sphingosine-1-phosphate:a novel predictor of clinical severity in COVID-19. EMBO. Mol. Med. 13, e13424.
    Marques, J.T., Marinho, H.S., de Almeida, R.F.M., 2018. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view. Prog. Lipid Res. 71, 18-42.
    Marsh, D., 2007. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884-3899.
    Matsuzaka, T., Kuba, M., Koyasu, S., Yamamoto, Y., Motomura, K., Arulmozhiraja, S., Ohno, H., Sharma, R., Shimura, T., Okajima, Y., et al., 2020. Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acyl-Chain Length and Hepatic Insulin Sensitivity in Mice. Hepatology 71, 1609-1625.
    McNally, B.D., Ashley, D.F., Hänschke, L., Daou, H.N., Watt, N.T., Murfitt, S.A., MacCannell, A.D.V., Whitehead, A., Bowen, T.S., Sanders, F.W.B., et al., 2022. Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nat.Commun. 13, 1748.
    Mendelson, K., Evans, T., Hla, T., 2014. Sphingosine 1-phosphate signalling. Development 141, 5- 9.
    Miao, H., Li, B., Wang, Z., Mu, J., Tian, Y., Jiang, B., Zhang, S., Gong, X., Shui, G., Lam, S.M., 2022. Lipidome Atlas of the Developing Heart Uncovers Dynamic Membrane Lipid Attributes Underlying Cardiac Structural and Metabolic Maturation. Research 2022, 0006.
    Mizutani, Y., Kihara, A., Igarashi, Y., 2006. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem. J. 398, 531-538.
    Mullen, T.D., Hannun, Y.A., Obeid, L.M., 2012. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 441, 789-802.
    Nicholson, R.J., Poss, A.M., Maschek, J.A., Cox, J.E., Hopkins, P.N., Hunt, S.C., Playdon, M.C., Holland, W.L., Summers, S.A., 2021. Characterizing a Common CERS2 Polymorphism in a Mouse Model of Metabolic Disease and in Subjects from the Utah CAD Study. J. Clin. Endocr. Metab. 106, 3098-3109.
    Novgorodov, S.A., Chudakova, D.A., Wheeler, B.W., Bielawski, J., Kindy, M.S., Obeid, L.M., Gudz, T.I., 2011. Developmentally regulated ceramide synthase 6 increases mitochondrial Ca2+ loading capacity and promotes apoptosis. J. Biol. Chem. 286, 4644-4658.
    Novgorodov, S.A., Riley, C.L., Keffler, J.A., Yu, J., Kindy, M.S., Macklin, W.B., Lombard, D.B., Gudz, T.I., 2016a. SIRT3 deacetylates ceramide synthases: implications for mitochondrial dysfunction and brain injury. J. Biol. Chem. 291, 1957-1973.
    Novgorodov, S.A., Riley, C.L., Yu, J., Keffler, J.A., Clarke, C.J., Van Laer, A.O., Baicu, C.F., Zile, M.R., Gudz, T.I., 2016b. Lactosylceramide contributes to mitochondrial dysfunction in diabetes. J.Lipid Res. 57, 546-562.
    Ogretmen, B., 2018. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33-50.
    Ohno, Y., Kamiyama, N., Nakamichi, S., Kihara, A., 2017. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 8, 14610.
    Ohno, Y., Suto, S., Yamanaka, M., Mizutani, Y., Mitsutake, S., Igarashi, Y., Sassa, T., Kihara, A., 2010. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl.Acad. Sci. U. S. A. 107, 18439-18444.
    Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., Slotte, J.P., 2002. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66-97.
    Oleinik, N., Kim, J., Roth, B.M., Selvam, S.P., Gooz, M., Johnson, R.H., Lemasters, J.J., Ogretmen, B., 2019. Mitochondrial protein import is regulated by p17/PERMIT to mediate lipid metabolism and cellular stress. Sci. Adv. 5, eaax1978.
    Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y., and Suzuki, A., 2004. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687- 695.
    Panevska, A., Skocaj, M., Krizaj, I., Macek, P., Sepcic, K., 2019. Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochim. Biophys. Acta. Biomembr. 1861, 1284- 1292.
    Pani, T., Rajput, K., Kar, A., Sharma, H., Basak, R., Medatwal, N., Saha, S., Dev, G., Kumar, S., Gupta, S., et al., 2021. Alternative splicing of ceramide synthase 2 alters levels of specific ceramides and modulates cancer cell proliferation and migration in Luminal B breast cancer subtype. Cell Death Dis. 12, 171.
    Peters, F., Tellkamp, F., Brodesser, S., Wachsmuth, E., Tosetti, B., Karow, U., Bloch, W., Utermöhlen, O., Krönke, M., Niessen, C.M., 2020. Murine Epidermal Ceramide Synthase 4 Is a Key Regulator of Skin Barrier Homeostasis. J. Invest. Dermatol. 140, 1927-1937.
    Peters, F., Vorhagen, S., Brodesser, S., Jakobshagen, K., Brüning, J.C., Niessen, C.M., Krönke, M., 2015. Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J. Invest.Dermatol. 135, 1501-1509.
    Pimentel, F.S.A., Machado, C.M., De-Souza, E.A., Fernandes, C.M., De-Queiroz, A., Silva, G.F.S., Del Poeta, M., Montero-Lomeli, M., Masuda, C.A., 2022. Sphingolipid depletion suppresses UPR activation and promotes galactose hypersensitivity in yeast models of classic galactosemia. Biochim.Biophys. Acta Mol. Cell Res. 1868, 166389.
    Poole, R.M., 2014. Eliglustat: first global approval. Drugs 74, 1829-1836.
    Poss, A.M., Maschek, J.A., Cox, J.E., Hauner, B.J., Hopkins, P.N., Hunt, S.C., Holland, W.L., Summers, S.A., Playdon, M.C., 2020. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest. 130, 1363-1376.
    Qiu, Z., Wang, X., Yang, Z., Liao, S., Dong, W., Sun, T., Wu, H., Zhang, Q., Pan, Z., Lam, S.M., et al., 2022. GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/beta-catenin signalling pathway. Cell Death Dis. 13, 508.
    Quinville, B.M., Deschenes, N.M., Ryckman, A.E., Walia, J.S., 2021. A Comprehensive Review:Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int. J. Mol.Sci. 22, 5793.
    Rabionet, M., van der Spoel, A.C., Chuang, C.C., von Tümpling-Radosta, B., Litjens, M., Bouwmeester, D., Hellbusch, C.C., Körner, C., Wiegandt, H., Gorgas, K., et al., 2008. Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J. Biol. Chem. 283, 13357-13369.
    Raichur, S., Wang, S.T., Chan, P.W., Li, Y., Ching, J., Chaurasia, B., Dogra, S., Öhman, M.K., Takeda, K., Sugii, S., et al., 2014. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687-695.
    Rego, A., Trindade, D., Chaves, S.R., Manon, S., Costa, V., Sousa, M.J., Corte-Real, M., 2014. The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids.FEMS. Yeast Res. 14, 160-178.
    Salvemini, D., Doyle, T., Kress, M., Nicol, G., 2013. Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol. Sci. 34, 110-118.
    Santos, T.C.B., Dingjan, T., Futerman, A.H., 2022. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS. Lett. 596, 2345-2363.
    Sassa, T., Hirayama, T., Kihara, A., 2016. Enzyme Activities of the Ceramide Synthases CERS2-6Are Regulated by Phosphorylation in the C-terminal Region. J. Biol. Chem. 291, 7477-7487.
    Schiffmann, S., Ferreiros, N., Birod, K., Eberle, M., Schreiber, Y., Pfeilschifter, W., Ziemann, U., Pierre, S., Scholich, K., Grösch, S., et al., 2012. Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 188, 5723-5733.
    Schüll, S., Günther, S.D., Brodesser, S., Seeger, J.M., Tosetti, B., Wiegmann, K., Pongratz, C., Diaz, F., Witt, A., Andree, M., et al., 2015. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 6, e1691.
    Senkal, C.E., Ponnusamy, S., Bielawski, J., Hannun, Y.A., Ogretmen, B., 2010. Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB. J. 24, 296-308.
    Senkal, C.E., Salama, M.F., Snider, A.J., Allopenna, J.J., Rana, N.A., Koller, A., Hannun, Y.A., Obeid, L.M., 2017. Ceramide Is Metabolized to Acylceramide and Stored in Lipid Droplets. Cell Metab. 25, 686-697.
    Sentelle, R.D., Senkal, C.E., Jiang, W., Ponnusamy, S., Gencer, S., Selvam, S.P., Ramshesh, V.K., Peterson, Y.K., Lemasters, J.J., Szulc, Z.M., et al., 2012. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831-838.
    Sezgin, E., Levental, I., Mayor, S., Eggeling, C., 2017. The mystery of membrane organization:composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361-374.
    Shi, H., Niimi, A., Takeuchi, T., Shiogama, K., Mizutani, Y., Kajino, T., Inada, K., Hase, T., Hatta, T., Shibata, H., et al., 2021. CEBPγ facilitates lamellipodia formation and cancer cell migration through CERS6 upregulation. Cancer Sci. 112, 2770-2780.
    Shin, K.O., Lim, C.J., Park, H.Y., Kim, S., Kim, B., Lee, Y., Chung, H., Jeong, S.K., Park, K., Park, K., 2020. Activation of SIRT1 Enhances Epidermal Permeability Barrier Formation through Ceramide Synthase 2- and 3-Dependent Mechanisms. J. Invest. Dermatol. 140, 1435-1438.
    Shin, S.H., Cho, K.A., Yoon, H.S., Kim, S.Y., Kim, H.Y., Pewzner-Jung, Y., Jung, S.A., Park, W.J., Futerman, A.H., Park, J.W., 2021. Ceramide Synthase 2 Null Mice Are Protected from Ovalbumin-Induced Asthma with Higher T Cell Receptor Signal Strength in CD4+ T Cells. Int. J. Mol. Sci. 22, 2713.
    Shui, G., Lam, S.M., Stebbins, J., Kusunoki, J., Duan, X., Li, B., Cheong, W.F., Soon, D., Kelly, R.P., Wenk, M.R., 2013. Polar lipid derangements in type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics 9, 786-799.
    Simons, K. and Ikonen, E., 1997. Functional rafts in cell membranes. Nature 387, 569-572.
    Slotte, J.P., 2013. Biological functions of sphingomyelins. Prog. Lipid Res. 52, 424-437.
    Song, J.W., Lam, S.M., Fan, X., Cao, W.J., Wang, S.Y., Tian, H., Chua, G.H., Zhang, C., Meng, F.P., Xu, Z., et al., 2020. Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19Pathogenesis. Cell Metab. 32, 188-202.
    Sridevi, P., Alexander, H., Laviad, E.L., Pewzner-Jung, Y., Hannink, M., Futerman, A.H., Alexander, S., 2009. Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim. Biophys.Acta Mol. Cell Res. 1793, 1218-1227.
    Strader, C.R., Pearce, C.J., Oberlies, N.H., 2011. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod. 74, 900-907.
    Summers, S.A., Garza, L.A., Zhou, H., Birnbaum, M.J.,1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18, 5457-5464.
    Summers, S.A., 2018. Could Ceramides Become the New Cholesterol? Cell Metab 27, 276-280.
    Summers, S.A., Chaurasia, B., and Holland, W.L., 2019. Metabolic Messengers: ceramides. Nat.Metab. 1, 1051-1058.
    Tallima, H., Azzazy, H.M.E., El Ridi, R., 2021. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis. 20, 150.
    Tidhar, R., Zelnik, I.D., Volpert, G., Ben-Dor, S., Kelly, S., Merrill, A.H., Jr., Futerman, A.H., 2018.Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 293, 9912-9921.
    Tosetti, B., Brodesser, S., Brunn, A., Deckert, M., Blüher, M., Doehner, W., Anker, S.D., Wenzel, D., Fleischmann, B., Pongratz, C., et al., 2020. A tissue-specific screen of ceramide expression in aged mice identifies ceramide synthase-1 and ceramide synthase-5 as potential regulators of fiber size and strength in skeletal muscle. Aging Cell 19, e13049.
    Trayssac, M., Hannun, Y.A., Obeid, L.M., 2018. Role of sphingolipids in senescence: implication in aging and age-related diseases. J. Clin. Invest. 128, 2702-2712.
    Turner, N., Lim, X.Y., Toop, H.D., Osborne, B., Brandon, A.E., Taylor, E.N., Fiveash, C.E., Govindaraju, H., Teo, J.D., McEwen, H.P., et al., 2018. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 9, 3165.
    Turpin-Nolan, S.M., Hammerschmidt, P., Chen, W., Jais, A., Timper, K., Awazawa, M., Brodesser, S., Brüning, J.C., 2019. CerS1-Derived C(18:0) Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance. Cell Rep. 26, 1-10.
    Vanni, N., Fruscione, F., Ferlazzo, E., Striano, P., Robbiano, A., Traverso, M., Sander, T., Falace, A., Gazzerro, E., Bramanti, P., et al., 2014. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann. Neurol. 76, 206-212.
    Vos, M., Dulovic-Mahlow, M., Mandik, F., Frese, L., Kanana, Y., Haissatou Diaw, S., Depperschmidt, J., Bohm, C., Rohr, J., Lohnau, T., et al., 2021. Ceramide accumulation induces mitophagy and impairs beta-oxidation in PINK1 deficiency. Proc. Natl. Acad. Sci. U. S. A. 118, e2025347118.
    Wang, F., Dai, Y., Zhu, X., Chen, Q., Zhu, H., Zhou, B., Tang, H., Pang, S., 2021. Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C.elegans. Nat. Commun. 12, 5073.
    Wang, J., Zhang, J., Ma, D., Li, X., 2020a. The Potential Role of CERS1 in Autophagy Through PI3K/AKT Signaling Pathway in Hypophysoma. Technol. Cancer Res. T. 19, 1533033820977536.
    Wang, R., Li, B., Lam, S.M., Shui, G., 2020b. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genomics 47, 69-83.
    Wang, X., Qiu, Z., Dong, W., Yang, Z., Wang, J., Xu, H., Sun, T., Huang, Z., Jin, J., 2022. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis. 13, 768.
    Wang, Z., Cao, M., Lam, S.M., Shui, G., 2023. Embracing lipidomics at single-cell resolution:Promises and pitfalls. Trends Analyt. Chem. 160.
    Wigger, L., Cruciani-Guglielmacci, C., Nicolas, A., Denom, J., Fernandez, N., Fumeron, F., Marques-Vidal, P., Ktorza, A., Kramer, W., Schulte, A., et al., 2017. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Rep. 18, 2269-2279.
    Wockner, L.F., Morris, C.P., Noble, E.P., Lawford, B.R., Whitehall, V.L., Young, R.M., Voisey, J., 2015. Brain-specific epigenetic markers of schizophrenia. Transl. Psychiatry 5, e680.
    Yamakawa, D., Katoh, D., Kasahara, K., Shiromizu, T., Matsuyama, M., Matsuda, C., Maeno, Y., Watanabe, M., Nishimura, Y., Inagaki, M., 2021. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep. 34, 108817.
    Ye, J., Ye, X., Jiang, W., Lu, C., Geng, X., Zhao, C., Ma, Y., Yang, P., Man Lam, S., Shui, G., et al., 2021. Targeted lipidomics reveals associations between serum sphingolipids and insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. Diabetes Res. Clin. Pract. 173.
    Youssefian, L., Vahidnezhad, H., Saeidian, A.H., Sotoudeh, S., Mahmoudi, H., Daneshpazhooh, M., Aghazadeh, N., Adams, R., Ghanadan, A., Zeinali, S., et al., 2017. Autosomal recessive congenital ichthyosis: CERS3 mutations identified by a next generation sequencing panel targeting ichthyosis genes. Eur. J. Hum. Genet. 25, 1282-1285.
    Zhang, X., Sakamoto, W., Canals, D., Ishibashi, M., Matsuda, M., Nishida, K., Toyoshima, M., Shigeta, S., Taniguchi, M., Senkal, C.E., et al., 2021a. Ceramide synthase 2-C(24:1) -ceramide axis limits the metastatic potential of ovarian cancer cells. FASEB. J. 35, e21287.
    Zhang, Y., Ji, S., Zhang, X., Lu, M., Hu, Y., Han, Y., Shui, G., Lam, S.M., Zou, X., 2022. Human CPTP promotes growth and metastasis via sphingolipid metabolite ceramide and PI4KA/AKT signaling in pancreatic cancer cells. Int. J. Biol. Sci. 18, 4963-4983.
    Zhang, Y., Wang, H., Chen, T., Wang, H., Liang, X., Zhang, Y., Duan, J., Qian, S., Qiao, K., Zhang, L., et al., 2021b. C24-Ceramide Drives Gallbladder Cancer Progression Through Directly Targeting Phosphatidylinositol 5-Phosphate 4-Kinase Type-2 Gamma to Facilitate Mammalian Target of Rapamycin Signaling Activation. Hepatology 73, 692-712.
    Zhao, L., Spassieva, S.D., Jucius, T.J., Shultz, L.D., Shick, H.E., Macklin, W.B., Hannun, Y.A., Obeid, L.M., Ackerman, S.L., 2011. A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 7, e1002063.
    Zhu, Y., Gu, L., Lin, X., Zhang, J., Tang, Y., Zhou, X., Lu, B., Lin, X., Liu, C., Prochownik, E.V., et al., 2022. Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI. Insight 7, e150607.
    Zigdon, H., Kogot-Levin, A., Park, J.W., Goldschmidt, R., Kelly, S., Merrill, A.H., Jr., Scherz, A., Pewzner-Jung, Y., Saada, A., Futerman, A.H., 2013. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947- 4956.
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  57
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 录用日期:  2023-06-15
  • 修回日期:  2023-05-29
  • 网络出版日期:  2023-06-26

目录

    /

    返回文章
    返回